CHEM1405 (Vet. Science) - June 2005

2005-J-2

•

N: sp^3 hybridised, tetrahedral geometry C (CH₂) sp^3 hybridised, tetrahedral geometry

 $C(CO_2)$ sp^2 hybridised, trigonal planar geometry

The high melting point for this small molecule suggests strong intermolecular forces - in this case electrostatic attraction between zwitterions.

2005-J-3

- 2.80
- A buffer has a high (eg 0.10 M) concentration of HPO_4^{2-} and $H_2PO_4^{-}$ in equilibrium Upon addition of H_3O^+ the equilibrium moves to reduce acid added ie $HPO_4^{2-} + H_3O^+ \rightarrow H_2PO_4^{-}$

Upon addition of OH^- the equilibrium moves to reduce base added ie $H_2PO_4^- + OH^- \rightarrow HPO_4^{-2-}$

• Although PH₃ is a larger molecule with greater dispersion forces than ammonia, NH₃ has hydrogen bonding which is the dominant intermolecular force and results in a greater attraction between NH₃ molecules than there is between PH₃ molecules.

2005-J-4

0.154 M

7.84 atm

Saline solution is isotonic with blood plasma. Injection water would have a hypotonic effect and cause lysis of cells.

• $1s^22s^22p^63s^23p^6$ eg n=1; l=0; m₁=0; m_s=+1/2

2005-J-5

• ΔG° = -142.4 kJ mol⁻¹; as ΔG° < 0, the reaction is spontaneous. To the left 9.17 x 10^{24} atm⁻¹ T > 1056 K

2005-J-6

- 0.209 atm
- 15 min

2005-J-7

Oxidation with acidified dichromate

Reaction with aqueous hydroxide

Reaction with hydrogencarbonate solution

A
$$OH$$
 OH
 OH

Reaction with bromine solution

$$rac{\operatorname{Br}_2}{\mathbf{A}}$$
 no reaction, orange colour remains $rac{\operatorname{Br}_2}{\mathbf{B}}$ orange colour fades

Silver mirror test - reaction with Tollens solution

2005-J-8

2005-J-9

NADH (forward) NAD⁺ (reverse)

2005-J-10

• (*R*),(*E*) - 5-bromo-2-pentene *cis*-2,6-dimethylcyclohexanone

$$\begin{array}{c|c} COO^{-} \\ H_2N & H \\ \hline (CH_2)_4 \\ NH_3^{+} \end{array}$$