99/21(a)

The University of Sydney

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

FIRST SEMESTER EXAMINATION

JUNE 2005

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution. Logarithms may also be used.
- Numerical values required for any question as well as a Periodic Table are printed on a separate data sheet.
- Pages 17, 22 & 24 are for rough work only.

OFFICIAL USE ONLY

Multiple choice section Marks Pages Max Gained 2-12 45

Short answer section

		Marks						
Page	Max	Gaine	d	Marker				
13	6							
14	7							
15	6							
16	5							
18	5							
19	10							
20	4							
21	4							
23	8							
Total	55							
Check Total								

CONFIDENTIAL

•	Glycine, NH ₂ CH ₂ COOH, the simplest of all naturally occurring amino acids, has a melting point of 292 °C. The pK_a of the acid group is 2.35 and the pK_a associated with the amino group is 9.78. Draw a structure that indicates the charges on the molecule at the physiological pH of 7.4.	Marks 6
	Use your structure to illustrate the concent of resonance	
	Describe the hybridisation of the two carbon atoms and the nitrogen atom in glycine and the geometry of the atoms surrounding these three atoms.	
	Glycine has an unusually high melting point for a small molecule. Suggest a reason for this.	

• Quinine is a natural product that has anti-malarial properties. It was originally extracted for therapeutic use from the bark of the cinchona tree, but is now synthesised by the pharmaceutical industry. Quinine is not very soluble in water and is generally administered as the more soluble hydrochloride salt ($C_{20}H_{24}N_2O_2$ ·HCl). The pK _a of this salt is 4.32. What is the pH of a 0.053 M solution of quinine hydrochloride?	Marks 3
Answer:	
• Use chemical equations to illustrate how $HPO_4^{2-}/H_2PO_4^{-}$ can act as a buffer.	2
 Ammonia (NH₃) has a boiling point of -33 °C and phosphine (PH₃) has a boiling point of -83 °C. Explain the difference in these boiling points in terms of the intermolecular forces present. 	2

• A saline solution used for intravenous injections contains in 100 mL. What is the concentration of this sodium chlo	900 mg of sodium chloride 4
Γ.	
Answer:	
What is the osmotic pressure of this solution at 37 °C?	
Answer:	
Why is it better to use a saline solution rather than pure w	ater when administering
drugs intravenously?	
Write the ground state electron configuration of the Ca ²⁺	cation. 2
List the quantum numbers (n, l, m_l, m_s) that describe any or ground state Ca ²⁺ cation.	one of the electrons in the

• For the reaction $2SO_2(g) + O_2(g) \iff 2SO_3(g)$ at 25 °C	larks 5
$\Delta H^{\circ} = -198.4 \text{ kJ mol}^{-1} \text{ and } \Delta S^{\circ} = -187.9 \text{ J K}^{-1} \text{ mol}^{-1}$	
Show that this reaction is spontaneous in the forward direction at 25 °C.	
If the volume of the reaction system is increased at 25 °C, in which direction will the equilibrium move?	
Calculate the value of the equilibrium constant $K_{\rm c}$ at 25 °C	
Calculate the value of the equinoritant constant, K _p , at 25°C.	
<i>K</i> _p =	
Assuming ΔH° and ΔS° are independent of temperature, in which temperature range is the reaction non-spontaneous?	
Answer:	

CHEM1405 2005-J	I-6	99/21(a)	
• The atmosphere contains 21% oxygen. what is the partial pressure of oxygen (Given an atmospheric pre in atm) under these conditi	ssure of 755 mmHg, ons?	Marks 2
 Sevoflurane is an anaesthetic with a ha long does it take for the concentration of 	Answer: If-life in the brain of 2.3 m of sevoflurane in brain tissu	inutes. How ue to drop from	3
0.025 mM to one hundredth of this value	ue?		
	Answer:		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks • How would you distinguish between the following pairs of molecules by means of a 10 simple chemical test? In each case, indicate what reagent would be added and any physical change observed. Write an equation for any reaction that occurs. Specify if no reaction occurs by writing "N.R.". OH A B ÓΗ OH A CH₂OH B Α ΟH ЮH Ö B A B CH₂OH A O OCH₃ ΗÓ ЬН ÓН CH₂OH B ΗÓ ÓН ÒН ÓН

• The constitutional formula of nicotinamide adenine dinucleotide, NADH, is given below. $\begin{array}{c}
\mathbf{Marks} \\
\mathbf{4} \\
\mathbf{4}$

Give the structure of NAD⁺. (You may use "R" to abbreviate the adenine dinucleotide portion of the molecule.)

ÓН

ÓН

ö

Give the structure of adenosine, a nucleoside containing the nucleic base adenine.

THIS QUESTION IS CONTINUED ON THE NEXT PAGE.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks • Name the following compounds. Be careful to include stereochemical descriptors 4 where appropriate. '''H Br O 4 • Give the constitutional formula for a naturally occurring tripeptide, Lys-Glu-Ala. Side-chains: Lys = $-(CH_2)_4NH_2$; Glu = $-CH_2CH_2COOH$; Ala = $-CH_3$. The pI for Lys is 9.7 and its pK_a values are 2.18 (α -COOH), 8.95 (α -NH₃^{\oplus}) and 10.53 (–(CH₂)₄NH₃^{\oplus}). Use a Fischer projection to show the predominant species present in an aqueous solution of Lys at pH 9.7.

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

DATA SHEET

Physical constants Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \text{ kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10 ⁻⁶	micro	μ
10^{-9}	nano	n
10^{-12}	pico	р

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	М
10 ⁹	giga	G

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

Standard Reduction Potentials, E°									
E° / V									
+1.82									
+1.72									
+1.36									
+1.23									
+0.92									
+0.80									
+0.77									
+0.53									
+0.34									
+0.15									
0 (by definition)									
-0.04									
-0.13									
-0.14									
-0.24									
-0.28									
-0.44									
-0.74									
-0.76									
-0.83									
0.00									
-0.89									
-0.89 -1.68									
-0.89 -1.68 -2.36									

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

Useful formulas						
Quantum Chemistry	Radioactivity					
$E = hv = hc/\lambda$	$t_{1/2} = \ln 2/\lambda$					
$\lambda = h/mv$	$A = \lambda N$					
$4.5k_{\rm B}T = hc/\lambda$	$\ln(N_0/N_t) = \lambda t$					
$E = Z^2 E_{\rm R}(1/n^2)$	14 C age = 8033 ln(A_0/A_t)					
Acids and Bases	Gas Laws					
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT					
$pK_w = pK_a + pK_b = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$					
$pH = pK_a + \log\{[A^-] / [HA]\}$						
Colligative properties	Kinetics					
$\pi = cRT$	$t_{1/2} = \ln 2/k$					
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$					
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$					
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k_2} = \frac{E_a}{k_a} \left(\frac{1}{k_a} - \frac{1}{k_a} \right)$					
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2$					
Electrochemistry	Thermodynamics & Equilibrium					
$\Delta G^{\circ} = -nFE^{\circ}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$					
Moles of $e^- = It/F$	$\Delta G = \Delta G^{\circ} + RT \ln Q$					
$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$	$\Delta G^{\circ} = -RT \ln K$					
$= E^{\circ} - (RT/nF) \times \ln Q$	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$					
$E^\circ = (RT/nF) \times 2.303 \log K$						
$= (RT/nF) \times \ln K$						
$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$						
Polymers	Mathematics					
$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$					
	$\ln x = 2.303 \log x$					

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудгоден Н 1.008																	2 нелим Не 4.003
3 LITHIUM Li	4 beryllium Be											5 вогол В	6 carbon C	7 nitrogen N	8 oxygen O	9 ^{fluorine} F	10 _{NEON} Ne
6.941 11 sodium Na	9.012 12 magnesium Mg											10.81 13 ALUMINIUM	12.01 14 SILICON Si	14.01 15 рнозрногиз Р	16.00 16 ^{SULFUR} S	19.00 17 CHLORINE	20.18 18 ARGON Ar
22.99 19 ротаssium	24.31 20 CALCIUM	21 scandium	22 TITANIUM	23 VANADIUM	24	25 manganese	26 IRON	27 cobalt	28 NICKEL	29 COPPER	30 zinc	26.98 31 GALLIUM	28.09 32 GERMANIUM	30.97 33 ARSENIC	32.07 34 selenium	35.45 35 BROMINE	39.95 36 KRYPTON
K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.59	As 74.92	Se 78.96	Br 79.90	Kr 83.80
37 RUBIDIUM	38 strontium	39 yttrium	40 zirconium	41 NIOBIUM	42 MOLYBDENUM	43 TECHNETIUM	44 RUTHENIUM	45 RHODIUM	46 palladium	47 SILVER	48 cadmium	49 INDIUM	50 ^{TIN}	51 ANTIMONY	52 TELLURIUM	53 IODINE	54 xenon
KD 85.47	Sr 87.62	Y 88.91	Zr 91.22	IND 92.91	1 N10 95.94	IC [98.91]	KU 101.07	Rh 102.91	Pd 106.4	Ag 107.87	Cd 112.40	In 114.82	Sn 118.69	SD 121.75	1e 127.60	1 126.90	Xe 131.30
55 caesium Cs	56 ^{вакіим} Ва	57-71	72 нарпим Нf	73 tantalum Ta	74 ^{tungsten} W	75 RHENIUM Re	76 _{озмиим} Os	77 ^{iridium} Ir	78 platinum Pt	79 ^{GOLD} Au	80 mercury Hg	81 THALLIUM TI	82 LEAD Pb	83 візмитн Ві	84 polonium Po	85 astatine At	86 radon Rn
132.91 87 FRANCIUM	137.34 88 RADIUM	89-103	178.49 104	0 180.95 105 DUBNIUM	183.85 106 seaborgium	186.2 107 вонкішм	190.2 108 наssium	192.22 109 meitnerium	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
Fr [223.0]	Ra [226.0]		Rf [261]	Db [262]	Sg [266]	Bh [262]	Hs [265]	Mt [266]									
LANTHANID	ES LANTHA	7 5 NUM CEL a (91 140	8 ким Се	59 praseodymium Pr 140,91	60 NEODYMIUM Nd 144 24	61 promethium Pm [144 9]	62 samarium Sm 150.4	63 еигоріим Еи 151.96	64 GADOLINIUM Gd 157.25	4 65 TERBI	5 UM DYS b] 93 16	66 PROSIUM Dy	67 ноіміим Но	68 Erbium Er 167.26	69 тнилим Тт 168 93	70 ytterbium Yb 173.04	71 LUTETHUM LU 174 97
ACTINIDES	S Active [227	Image: product of the second	00 00 00 00 00 00 00 00 00 00 00 00 00	91 PROTACTINIUM Pa [231.0]	92 URANIUM U 238.03	93 NEPTUNIUM Np [237.0]	94 PLUTONIUM Pu [239.1]	95 AMERICIUM Am [243.1]	96 CURIUM [247.1]	97 BERKEL] [247	7 LIUM CAL K [.1] [2	98 fornium e Cf 52.1] [99 INSTEINIUM Es 252.1]	100 ^{FERMIUM} Fm [257.1]	101 мендеleviuм Мd [256.1]	102 NOBELIUM NO [259.1]	103 LAWRENCIUM Lr [260.1]

PERIODIC TABLE OF THE ELEMENTS

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

99/21(b)