The University of Sydney

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution. Logarithms may also be used.
- Numerical values required for any question as well as a Periodic Table are printed on a separate data sheet.
- Page 17 is for rough work only.

OFFICIAL USE ONLY

Multiple	e choice	section
\backslash		Marks
Pages	Max	Gained
2-12	41	

Short answer section

	Marks			
Page	Max	Gained		Marker
13	8			
14	6			
15	6			
16	5			
18	6			
19	3			
20	7			
21	4			
22	5			
23	6			
24	3			
Total	59			

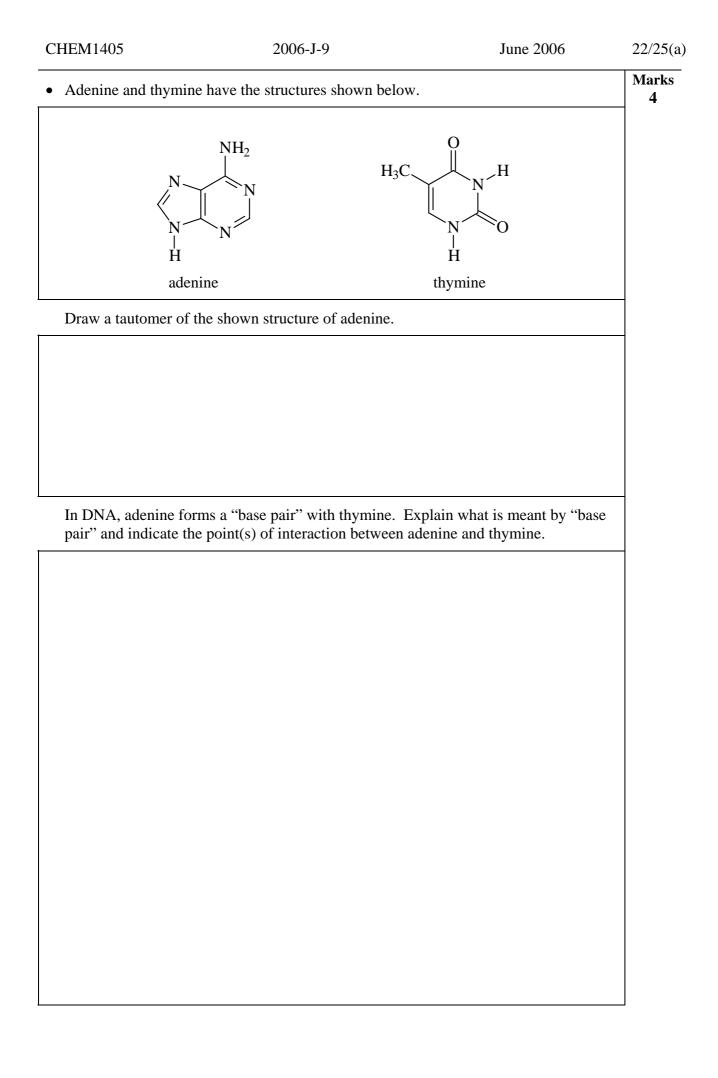
22/25(a)

JUNE 2006

CHEM1405	2006-J-2	June 2006	22/25(a)
Draw Lewis structure resonance hybrids with the structure of the stru	es of ozone, O_3 , and the formate a here appropriate.	nion, HCO_2^- , including	Marks 3
O ₃	HCO_2^-		_
• Calculate the osmotion 1500 mL of water at	c pressure of a solution of 1.0 g of 37 °C.	f glucose ($C_6H_{12}O_6$) in	4
	Answer:		_
	or intravenous administration of fl concentration rather than pure wat		
			1
• Write down the grou	nd state electron configuration of	the iron atom.	

CHEM1405	2006-J-3	June 2006	22/25(a)
• The balanced equa water is given belo	ation for the complete oxidation of g	lucose to carbon dioxide and	Marks 3
($C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) +$	6H ₂ O(l)	
	of carbon dioxide produced by the co		
	Answer:		
Calculate the volur	me of this mass of carbon dioxide at 0	.50 atm pressure and 37 °C.	
	Answer:		
	of chemical bonding and intermolecula $CH_4 < I_2 < NaCl < silica (SiO_2)$	r forces, the following trend	3

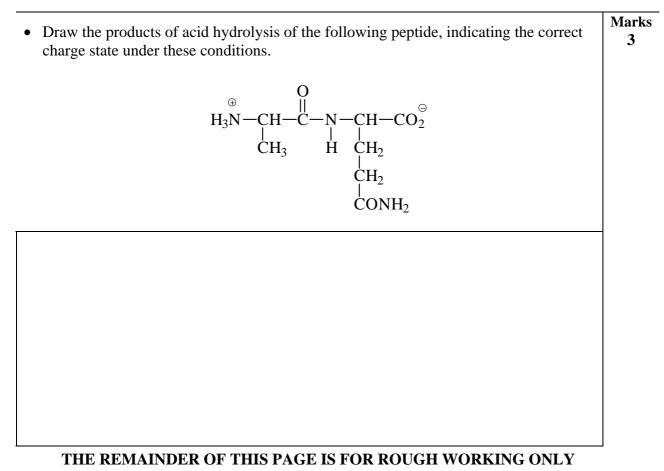
•	Draw a Lewis structure and thus determine the geometry of the ICl_4^- ion. (The I is the central atom.)	Marks 2
•	Explain briefly, in terms of intermolecular forces, why an analogue of DNA could not be made with phosphorus atoms replacing some nitrogen atoms, while still retaining a double-helical structure.	3
•	The solubility of nitrogen in water at 25 °C and 1.0 atm is 0.018 g L^{-1} . What is its solubility at 0.50 atm and 25 °C?	1
	Answer:	


CHEM1405	2006-J-5	June 2006	22/25(a)
C Calculate ΔH° for the formula of the contract of the	on food source. The net reaction for ${}_{6}H_{12}O_{6}(s) + 6O_{2}(g) \rightarrow 6CO_{2}(g) +$ his reaction given the following heat $= -1274 \text{ kJ mol}^{-1}, \Delta H^{\circ}_{f} (CO_{2}(g)) =$ 85 kJ mol ⁻¹	$6H_2O(l)$ s of formation.	Marks 5
	Answer:f glucose is carried out in air, water is for the combustion of glucose in air g $H_2O(1) \rightarrow H_2O(g)$ $\Delta H^\circ = +44$	given that	-
Will ΔS be different why?	Answer: t for the two oxidation reactions? If	so, how will it differ and	-

 Butyric acid, CH₃CH₂CH₂COOH, is found in rancid butter and parmesan chee The pK_a of butyric acid is 4.83. (a) What is the pH of a 0.10 M water solution of butyric acid? 	ese. 6
Answer:	
(b) Calculate the pH of the solution formed when 0.050 mol of NaOH(s) is add 1.0 L of 0.10 M butyric acid.	ded to
Answer:	
(c) Using equations, comment on how the final solution in (b) will respond to additions of small amounts of acid or base in comparison to 1 L of water.	

• Consider the reaction of $H_2(g)$ with $I_2(g)$ at 298 K to give $HI(g)$.			
$H_2(g) + I_2(g) \Longrightarrow 2H$	HI(g)	$K_{\rm p} = 2.24$	
If partial pressures of 0.20 atm of all three the reaction proceed?	e gases are m	ixed, in which direction will	
	Anguar		_
	Answer:		_
Calculate ΔG° for this reaction at 298 K.			_
	Answer:		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY


Marks • Draw the constitutional formula(s) of the major organic product(s) of the following 5 reactions. $-OH + Cr_2O_7^{2\Theta}/H^{\oplus} \longrightarrow$ + NADH / H^{\oplus} \longrightarrow excess $CH_3OH / H^{\oplus} \longrightarrow$ Br₂ 0 excess H_2NCH_3 \longrightarrow +Cl 2 • What are the requirements for a molecule to be aromatic? Give one example of an aromatic heterocycle.

The open chain form of D-glucose has the	e structure shown.	Marks
	СНО	5
H–	— ОН	
НО-	— Н	
H-	OH	
H—	——————————————————————————————————————	
	CH ₂ OH	
Draw the Haworth projection of β-D-gluc	copyranose.	_
Draw the major organic product of the rear reagents.	action of D-glucose with the following	
1. NaBH ₄ 2. H^{\oplus} / H ₂ O	$\left[\operatorname{Ag}(\operatorname{NH}_3)_2\right]^{\oplus} / \operatorname{OH}^{\ominus}$	
Would you expect D-glucose to be water	soluble? Why?	
		_

Marks • L-Tyrosine is a naturally occurring amino acid with the following side-chain. 6 —CH₂ OH The p K_a values of tyrosine are 2.20 (α -COOH), 9.19 (α -NH₃^{\oplus}) and 10.47 (sidechain). Draw the Fischer projection of L-tyrosine indicating the correct charge state at physiological pH. What is the absolute stereochemistry of L-tyrosine? Write (R) or (S). What is the value of the pI of L-tyrosine? What does pI represent? Account for the difference in acidity of the carboxylic acid group and the phenol.

THERE IS ANOTHER QUESTION ON THE BACK PAGE.

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Decimal fractions				Decimal multiples		
Fraction	Prefix	Symbol	Μ	ultiple	Prefix	Symbol
10^{-3}	milli	m		10 ³	kilo	k
10^{-6}	micro	μ		10 ⁶	mega	Μ
10^{-9}	nano	n		10 ⁹	giga	G
10^{-12}	pico	р				

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

E° / V					
+1.82					
+1.72					
+1.50					
+1.36					
+1.23					
+0.96					
+0.92					
+0.80					
+0.77					
+0.53					
+0.34					
+0.15					
0 (by definition)					
-0.04					
-0.13					
-0.14					
-0.24					
-0.44					
-0.74					
-0.76					
-0.83					
-0.89					
-1.68					
-2.36					
-2.71					
-2.87					
-3.04					

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

Useful formulas

Quantum Chemistry	Electrochemistry								
$E = h\nu = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$								
$\lambda = h/mv$	Moles of $e^- = It/F$								
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$								
$E = Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$								
$\Delta x \cdot \Delta (mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$								
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$								
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$								
Acids and Bases	Gas Laws								
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT								
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$								
$pH = pK_a + \log\{[A^-] / [HA]\}$									
Colligative properties	Kinetics								
$\pi = cRT$	$t_{\frac{1}{2}} = \ln 2/k$								
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$								
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$								
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln\frac{k_2}{k} = \frac{E_a}{R}\left(\frac{1}{T} - \frac{1}{T}\right)$								
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2$								
Radioactivity	Thermodynamics & Equilibrium								
$t_{l_2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$								
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$								
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$								
14 C age = 8033 ln(A_0/A_t)	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$								
Polymers	Mathematics								
$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$								
	$\ln x = 2.303 \log x$								

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудкоден Н 1.008																	2 нецим Не 4.003
3 LITHIUM Li	4 beryllium Be											5 boron B	6 CARBON C	7 NITROGEN N	8 oxygen O	9 ^{fluorine} F	10 _{меом} Ne
6.941	9.012	-										10.81	12.01	14.01	16.00	19.00	20.18
11 ^{зодим} Na	12 magnesium Mg											13 ALUMINIUM Al	Si	15 рнозрногиз Р	S	17 chlorine Cl	18 argon Ar
22.99 19 potassium	24.31 20 салстим	21 scandium	22 TITANI	UM VANADIUM	24 снязомиим	25 manganese	26 iron	27 cobalt	28 NICKEL	29 COPPER	30 zinc	26.98 31 gallium	28.09 32 germanium		32.07 34 selenium	35.45 35 bromine	39.95 36 круртол
K 39.10	Ca 40.08	Sc 44.96	Ti 47.8		Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.59	As 74.92	Se 78.96	Br 79.90	Kr 83.80
37 RUBIDIUM	38 strontium	39 yttrium	40 ZIRCONI	41 им мовим	42 molybdenum	43 тесниетиим	44 RUTHENIUM	45 RHODIUM	46 palladium	47 SILVER	48 cadmium	49 INDIUM	50 TIN	51 ANTIMONY	52 TELLURIUM	53 iodine	54 xenon
Rb 85.47	Sr 87.62	Y 88.91	Zr 91.2		Mo 95.94	Tc [98.91]	Ru 101.07	Rh 102.91	Pd 106.4	Ag 107.87	Cd 112.40	In 114.82	Sn 118.69	Sb 121.75	Te 127.60	I 126.90	Xe 131.30
55 caesium Cs	56 ^{вакіим} Ва	57-71	72 нарыц Н1	f 73 Tantalum	74 ^{TUNGSTEN} W	75 RHENIUM Re	76 озмиим Os	77 IRIDIUM Ir	78 Platinum Pt	79 _{GOLD} Au	80 mercury Hg	81 THALLIUM TI	82 LEAD Pb	83 візмитн Ві	84 polonium Po	85 ASTATINE At	86 ^{radon} Rn
132.91 87 FRANCIUM	137.34 88 RADIUM	89-103	RUTHERFO	4 105 RDIUM DUBNIUM	183.85 106 seaborgium	186.2 107 воняши	190.2 108 наssium	192.22 109 метлеким	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
Fr [223.0]	Ra [226.0]		Rf [261		Sg [266]	Bh [262]	Hs [265]	Mt [266]									
ANTHANIDI		NUM CE	58 RIUM	59 praseodymium	60 NEODYMIUM	61 promethium	62 samarium	63 Europium	64 gadolinium		UM DY	66 sprosium	67 HOLMIUM	68 erbium	69 THULIUM	70 ytterbium	71
	La 138.		C e 0.12	Pr 140.91	Nd 144.24	Pm [144.9]	Sm 150.4	Eu 151.96	Gd 157.25	T 158.		Dy 62.50	Ho 164.93	Er 167.26	Tm 168.93	Yb 173.04	Lu 174.9
ACTINIDES) (IUM THE	90 DRIUM	91 protactinium	92 uranium	93 NEPTUNIUM	94 plutonium	95 Americium	96 curium	97 BERKEL	7 LIUM CAI	98 JFORNIUM	99 EINSTEINIUM	100 fermium	101 mendelevium	102 NOBELIUM	103 LAWRENCE
	A [227		Г h 2.04	Pa [231.0]	U 238.03	Np [237.0]	Pu [239.1]	Am [243.1]	Cm [247.1]	Bl 1 [247		Cf 252.1]	Es [252.1]	Fm [257.1]	Md [256.1]	No [259.1]	Lr [260.1

PERIODIC TABLE OF THE ELEMENTS

22/25(b)