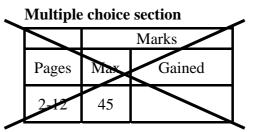
22/25(a) The University of Sydney

<u>CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)</u> <u>FIRST SEMESTER EXAMINATION</u>

CONFIDENTIAL

JUNE 2007

TIME ALLOWED: THREE HOURS


GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 17, 23 and 24 are for rough working only.

OFFICIAL USE ONLY

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
13	5			
14	9			
15	5			
16	5			
18	6			
19	6			
20	7			
21	6			
22	6			
Total	55			

• In the spaces provided, explain the meanings of the following terms. You may equation or diagram where appropriate.	ay use an Marks 5
(a) hydrogen bonding	
(b) colligative properties	
(c) hypotonic solution	
(d) isoelectric point	
(e) half life	

Marks

9

• Complete the table below showing the number of valence electrons, the Lewis structure and the VSEPR predicted shape of each of the following species.

Earmula	Number of valence	L ouvie atmusture	Comptant of appoint
Formula	electrons	Lewis structure	Geometry of species
e.g. NH ₃	8	$H = \ddot{N} = H$ H	trigonal pyramidal
CH ₄			
CO_2			
PF ₅			
NO ₃ ⁻			

Which one of the species above displays resonance, and how many resonance forms are possible?

Marks • Give the oxidation number of carbon in each of the following. 2 $CF_2Cl_2(g)$ $Na_2C_2O_4(s)$ $HCO_3^{-}(aq)$ C(s) Consider a voltaic cell that uses the following half-reactions: 3 • $MnO_{4}^{-}(aq) \ + \ 8H^{+}(aq) \ + \ 5e^{-} \ \rightarrow \ Mn^{2+}(aq) \ + \ 4H_{2}O(l)$ $\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$ Write a balanced equation for the overall reaction. Which species is the oxidising agent? Which species is the reducing agent? Calculate the standard cell potential. (Refer to the table of standard reduction potentials.) Answer:

• Stearic acid,
$$C_{14}H_{30}O_{2}$$
, is a fatty acid common in animal fats and vegetable oils and is a valuable energy source for mammals. The net reaction for its metabolism in humans is:
 $C_{14}H_{36}O_2(s) + 26O_2(g) \rightarrow 18CO_2(g) + 18H_2O(l)$
 Calculate AH^{e} for this reaction given the following heats of formation.
 AH_i^{e} ($C_{18}H_{36}O_2(s)$) = -948 kJ mol⁻¹, ΔH_i^{o} ($CO_2(g)$) = -393 kJ mol⁻¹ and AH_i^{e} ($H_2O(l)$) = -285 kJ mol⁻¹

 If the combustion of stearic acid is carried out in air, water is produced as a vapour.
 Calculate the AH^{e} for the combustion of stearic acid in air given that
 $H_2O(l) \rightarrow H_2O(g)$ AH^{o} = +44 kJ mol⁻¹

 Will ΔS be different for the two oxidation reactions? If so, how will it differ and why?

 Calculate the mass of carbon dioxide produced by the complete oxidation of 1.00 g of stearic acid.

 Answer:

CHEM1405	Page 6 of 24 pages	June 2007	22/25(a
a monoprotic acid with	HCOOH, is produced in the body during a p K_a of 3.86. 0.10 M water solution of lactic acid?	g normal exercise. It is	Marks 6
	Answer:		_
(b) Calculate the pH of 1.0 L of 0.10 M lactic a	the solution formed when 0.02 mol of acid.	Ca(OH) ₂ (s) is added to	
	Answer:		
additions of small amo	omment on how the final solution in (b) unts (e.g. less than 0.01 mol) of acid or mounts of acid or base to 1 L of water.	base in comparison to	

Is it likely to be soluble in water? Why?	
	_
Indicate on the above structure all stereogenic centres. Select one of these centres and clearly assign its stereochemical configuration.	
Name the functional groups present in orlistat.	

• Glycine, NH ₂ CH ₂ COOH, is the simplest of all naturally occurring amino acids. Th pK_a of the acid group is 2.35 and the pK_a associated with the amino group is 9.78. Draw a structure that indicates the charges on the molecule at the physiological pH of 7.4.	,
Use your structure to illustrate the concept of resonance.	
What are the hybridisation states and geometries of the two carbon atoms and the nitrogen atom in glycine?	
Propionic acid, CH_3CH_2COOH , has a melting point of -20.7 °C while glycine has a melting point of 292 °C. Suggest a reason why these two molecules have such different melting points.	a

• Alanine ($R = CH_3$) and lysine ($R = CH_2CH_2CH_2CH_2NH_2$) are two common amino acids. Using <i>ala</i> and <i>lys</i> to represent the two amino acids, represent all constitutional isomers of the tripeptide formed from one <i>ala</i> and two <i>lys</i> units.	Mar 6
Comment, giving your reason, on whether the tripeptide(s) will be acidic, neutral or basic in character.	
	-
Draw the constitutional formulas, indicating the correct ionic state, of the products formed from acid hydrolysis of one of your tripeptides.	
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY	
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY	

Marks • NAD⁺ and NADH are coenzymes used by animals in oxidation and reduction 4 reactions. They are related by the following half-reactions. NH₂ NH₂ $+ H^{\oplus} + 2e^{\Theta}$ Ŕ R Which of these coenzymes is used in the biological oxidation of ethanol, CH₃CH₂OH? What is the product of the biological oxidation of ethanol, CH₃CH₂OH? Which of NAD⁺ and NADH is aromatic? Give reasons for your answer. • Benzoic acid has a low solubility in water at pH 7, but is very soluble in aqueous 2 solutions of greater pH. Explain this observation, using chemical equations where appropriate.

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Decimal fractions			Decimal multiples			
Fraction	Prefix	Symbol	Mult	tiple	Prefix	Symbol
10^{-3}	milli	m	10) ³	kilo	k
10^{-6}	micro	μ	10) ⁶	mega	Μ
10 ⁻⁹	nano	n	10)9	giga	G
10^{-12}	pico	р				

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

Standard Reduction Potentials, E°	
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^- \rightarrow Pb(s)$	-0.13
-	
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.14 -0.24
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.24 -0.40
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.24 -0.40 -0.44
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.24 -0.40 -0.44 -0.74
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.24 -0.40 -0.44 -0.74 -0.76
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$	-0.24 -0.40 -0.44 -0.74 -0.76 -0.83
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.24 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-0.24 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-0.24 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.36

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

Useful formulas

	1
Quantum Chemistry	Electrochemistry
$E = h\nu = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$E = -Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{l/2} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2'$
Radioactivity	Thermodynamics & Equilibrium
$t_{l_2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 ln(A_0/A_t) years	$K_{\rm p} = K_{\rm c} \ (RT)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log 10 \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen																	2 HELIUM
H 1.008																	He 4.003
3	4]										5	6	7	8	9	10
LITHIUM Li	BERYLLIUM Be											BORON B	CARBON C	NITROGEN N	OXYGEN O	fluorine F	NEON Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11 sodium	12 magnesium											13 ALUMINIUM		15 phosphorus	16 sulfur	17 CHLORINE	18 ARGON
Na 22.99	Mg											Al 26.98	Si	P	S 32.07	Cl	Ar 39.95
19	24.31 20	21	22	23	24	25	26	27	28	29	30	31	28.09 32	30.97 33	32.07	35.45 35	39.9
POTASSIUM K	CALCIUM Ca	SCANDIUM SC	TITANIU? TI		CHROMIUM Cr	MANGANESE Mn	IRON Fe	COBALT CO	NICKEL NI	COPPER CU	zinc Zn	GALLIUM	GERMANIUM Ge		selenium Se	BROMINE Br	KRYPTO KRYPTO
1X 39.10	Ca 40.08	44.96	47.88		52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72		74.92	78.96	D1 79.90	83.8
37 RUBIDIUM	38 strontium	39 yttrium	40 zirconiu		42 molybdenum	43 TECHNETIUM	44 RUTHENIUM	45 RHODIUM	46 palladium	47 SILVER	48 cadmium	49 INDIUM	50 TIN	51 ANTIMONY	52 TELLURIUM	53 IODINE	54 XENON
Rb	Sronnom	YIRIOM	Zr		MOLYBBENOM	Тс	RUHENIOM	Rh	PALLADIUM	Ag	CADMIUM	In	Sn	Sb	Te	I	XeNON
85.47	87.62	88.91	91.22		95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82		121.75	127.60	126.90	131.3
55 caesium	56 barium	57-71	72 HAFNIUM	TANTALUM	74 TUNGSTEN	75 RHENIUM	76 озміим	77 iridium	78 platinum	79 GOLD	80 mercury	81 THALLIUM	82	83 bismuth	84 polonium	85 astatine	86 RADON
Cs	Ba		Hf		W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91 87	137.34 88	89-103	178.4 104		183.85 106	186.2 107	190.2 108	192.22 109	195.09 110	196.97 111	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0
FRANCIUM	RADIUM	07-105	RUTHERFOR	DIUM DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	DARMSTADTIUM	ROENTGENIUM							
Fr [223.0]	Ra [226.0]		Rf [261]		Sg [266]	Bh [262]	Hs [265]	Mt [266]	Ds [271]	Rg [272]							
			<u> </u>								1						
	ES LANTHA		58 RIUM	59 praseodymium	60 NEODYMIUM	61 promethium	62 samarium	63 Europium	64 gadolinium	M TERBI		66 sprosium	67 holmium	68 erbium	69 THULIUM	70 ytterbium	7.
NTHANID	ES LANTHA		Ce	PRASEODYMIUM	Nd	PROMETHICM	Smarion	EUROPIUM	GADOLINIUM			Dy	Но	Erbiom	Tm	YTTERBIUM	LUTER
	138.		0.12	140.91	144.24	[144.9]	150.4	151.96	157.25			62.50	164.93	167.26	168.93	173.04	174.
ACTINIDES	89		0 RIUM	91 protactinium	92 uranium	93 NEPTUNIUM	94 plutonium	95 AMERICIUM	96 curium	97 BERKEL		98 IFORNIUM	99 EINSTEINIUM	100 Fermium	101 mendelevium	102 NOBELIUM	1C
ICTINIDES	Á A	с Т	ĥ	Pa	U	Np	Pu	Am	Cm	Bl	k	Cf	Es	Fm	Md	No	L
	[227	.0] 232	2.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]] [247	[.1] [2	.52.1]	[252.1]	[257.1]	[256.1]	[259.1]	[26

PERIODIC TABLE OF THE ELEMENTS