FACULTY: VETERINARY SCIENCE

CONFIDENTIAL

JUNE 2000
TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

SURNAME				OTHER NAMES		
SID NUMBER		FACULTY		TABLE		

OFFICIAL USE ONLY

All questions are to be attempted. There are 17 pages of examinable material.

Complete the examination paper in INK.

Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.

The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.

Each new question begins with a \bullet.

Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution. Logarithms may also be used.

Numerical values required for any question as well as a Periodic Table are printed on a separate data sheet.

Pages $3,8,11,17,21 \& 24$ are for rough work only.

- Write balanced equations for the dissolution of the following compounds in water.
- The human eye is able to detect as little as $2.35 \times 10^{-18} \mathrm{~J}$ of green light of wavelength 510 nm . Calculate the minimum number of photons of this wavelength that can be detected by the human eye.
- Biochemists have discovered more than 400 mutant varieties of hemoglobin, the blood protein that carries oxygen in the body. A physician studying a variety associated with a fatal disease uses the following experiment to find its molar mass. In the experiment, 2.5 mg of the protein is dissolved in water at $5.0^{\circ} \mathrm{C}$ to make 1.50 mL of solution. The solution is found to have an osmotic pressure of $4.75 \times 10^{-3} \mathrm{~atm}$. What is the molar mass of the hemoglobin variety.

Answer:

- Normal arterial blood has an average pH of 7.40. Phosphate ions form one of the buffering

Mark systems in the blood. Use the acid ionisation constant data on the data page to identify which one of the following conjugate acid/base pairs would be suitable for preparing a buffer to be used in experiments on blood. Indicate your choice by circling the appropriate pair.

$$
\mathrm{HPO}_{4}{ }^{2-} / \mathrm{PO}_{4}{ }^{3-} \quad \mathrm{H}_{2} \mathrm{PO}_{4}^{--} / \mathrm{HPO}_{4}{ }^{2-} \quad \mathrm{H}_{3} \mathrm{PO}_{4} / \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{2-}
$$

Calculate the ratio of the base to conjugate acid that must be present in blood to buffer it to pH 7.40 .

Define buffer capacity. Does the above ratio affect the buffer capacity?

- The isotope ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ (Tc is the element technetium) is in an excited nuclear state and decays to its ground state by gamma emission. The first order integrated rate equation can be used to calculate the amount it decays with time. The half-life of ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ is 5.97 hours. What is the first order constant for its decay?

$$
k=
$$

Compounds of ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ are prepared at the nuclear reactor in the south of Sydney. They are used for medical imaging of the heart, bones, lungs and liver. A 20.0 mL solution leaves the reactor containing $20.0 \mu \mathrm{~g}$ of excited ${ }^{99 \mathrm{~m}} \mathrm{Tc}$, what mass of excited state ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ will remain when it is injected into a patient 2.0 hours later?

Answer:

- Complete the following table.

STARTING MATERIAL	REAGENTS/CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
	1. NaBH_{4} 2. $\mathrm{H}^{\oplus} / \mathrm{H}_{2} \mathrm{O}$	
Name:		
	dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ / heat	
Name:		
	dilute NaOH	
	$\begin{gathered} \mathrm{Br}_{2} \\ \left(\mathrm{CCl}_{4} \text { solvent }\right) \end{gathered}$	
	$\mathrm{H}^{\oplus} / \mathrm{H}_{2} \mathrm{O} /$ heat	
Name:		

- AZT is an analogue of the nucleoside thymidine and is clinically used in the treatment of AIDS. It differs from thymidine in that the $3^{\prime}-\mathrm{OH}$ group is replaced by an azido group $\left(-\mathrm{N}_{3}\right)$.

Mark
s
8

Classify the sugar present in AZT as a furanose or pyranose.
Is the sugar present as the α-anomer or the β-anomer?
How many stereogenic centres are there in AZT? \square
Hydrolysis of AZT gives the sugar 3-azido-2-deoxyribose and the nucleic base thymine. Give the structure of thymine and the structure of one tautomer of thymine.

thymine	tautomer

The sugar, 3-azido-2-deoxyribose, gives two products on treatment with acidified methanol. Give the constitutional formulas (using Haworth structures) of these products.

Product 1	Product 2

- Aspartame, a non-nutritive artificial sweetener, on hydrolysis gives 1 mol of aspartic acid (Asp), 1 mol of the aromatic amino acid phenylalanine (Phe) and 1 mol of methanol.

aspartame

List the functional groups present in aspartame.
\square
Give the structures of the amino acids Asp and Phe as the zwitterions.

Asp	Phe

The $\mathrm{p} K_{\mathrm{a}}$ values of aspartic acid are 2.0, 3.9 and 10.0. Give the structure of the predominant species present in a water solution of aspartic acid at pH 1.0 and pH 11.0.

pH 1.0	pH 11.0

CHEM1405-Chemistry 1 (Veterinary Science)

Numerical Data

Physical constants

Planck constant $=h=6.626 \times 10^{-34}$ joule second
Speed of light in vacuum $=c=2.998 \times 10^{8}$ metre second $^{-1}$
Avogadro constant $=N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mole}^{-1}$
Mass of electron $=m_{\mathrm{e}}=9.109 \times 10^{-31}$ kilogram
Ideal gas constant $=R=8.314$ joule kelvin ${ }^{-1}$ mole $^{-1}$ $=0.08206$ litre atmosphere kelvin $^{-1}$ mole $^{-1}$

Conversion factors

$$
\begin{array}{ll}
1 \mathrm{~nm}=1 \text { nanometre }=10^{-9} \text { metre } & 1 \mathrm{~L}=1 \text { litre }=10^{-3} \text { metre }^{3} \\
1 \mathrm{~kJ}=1 \text { kilojoule }=10^{3} \text { joule } & 1 \mathrm{~mL}=1 \text { millilitre }=10^{-3} \text { litre } \\
1 \mathrm{mg}=1 \text { milligram }=10^{-3} \text { gram } & 1 \mathrm{~Hz}=1 \text { hertz }=1 \text { second }^{-1}
\end{array}
$$

Acid ionisation constants

$\mathrm{H}_{3} \mathrm{PO}_{4} \quad \mathrm{p} K_{\mathrm{a}, 1}=2.15 \quad \mathrm{p} K_{\mathrm{a}, 2}=7.20 \quad \mathrm{p} K_{\mathrm{a}, 3}=12.38$

Useful equations required for CHEM1405

$$
E=h v=h c / \lambda \quad \lambda=h / m u
$$

$\Delta G=\Delta H-T \Delta S$
$\pi=M R T$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \quad \mathrm{pH}+\mathrm{pOH}=14$
Henderson-Hasselbalch equation $\quad \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log ([$ cong base $] /[a c i d])$
For first order integrated rate law $\quad t_{1 / 2}=\ln 2 / k$
$\ln [\mathrm{A}]_{0}-\ln [\mathrm{A}]_{\mathrm{t}}=k t$

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

