Topics in the June 2006 Exam Paper for CHEM1611

Click on the links for resources on each topic.

2006-J-2:

- Assumed Knowledge
- Atomic Structure
- Chemical Bonding

2006-J-3:

Assumed Knowledge

2006-J-4:

- Chemical Bonding
- The Shapes of Molecules
- Intermolecular forces

2006-J-5:

Acids and Bases

2006-J-6:

- Aromatic Hydrocarbons
- Alcohols, Phenols, Ethers and Thiols

2006-J-7:

- Introduction to Organic Chemistry
- Aldehydes and Ketones
- Spectroscopy
- Stereochemistry

2006-J-8:

- Alkenes
- Organic Halogen Compounds
- Alcohols, Phenols, Ethers and Thiols
- Amines
- Aromatic Hydrocarbons
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives

2006-J-9:

- Aldehydes and Ketones
- Carboxylic Acids and Derivatives

2006-J-10:

Carbohydrates

2006-J-11:

• Introduction to Organic Chemistry

2006-J-12:

• Amino Acids, Peptides and Proteins

22/31(a)

The University of Sydney

CHEM1611 - CHEMISTRY 1A (PHARMACY)

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2006

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 16 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent table.
- Each new question of the short answer section begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- A Periodic Table and numerical values required for any question may be found on a separate data sheet.
- Pages 12, 15 & 20 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

$\overline{}$	Marks		
Pages	Max	Gained	
2-6	28		

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
7	9			
8	3			
9	7			
10	5			
11	6			
13	6			
14	9			
16	8			
17	7			
18	2			
19	10			
Total	72			

CHEM1611		2006-J-2		June 20)06	22/31(a)
• Give the fu	all electron cont	iguration for the	ground state]	K atom.		Mark 2
What are the electron fu	he three quantu arthest from the	m numbers that d	escribe the or atom?	bital that conta	ins the	_
	<i>n</i> =	<i>l</i> =	<i>m</i> ₁ =	=		
• Draw the I Indicate wi	Lewis structures hich of the spec	, showing all values have contribu	ence electrons ting resonanc	s for the followice structures.] ing species.	4
NCO		COF ₂		NO ₃ ⁻		
Resonance: Y	TES / NO	Resonance: YE	<u> </u>	Resonance: Y	ES / NO	_
Human had	emoglobin has a	a molar weight of	$6.45 \times 10^4 \text{ g}$	mol^{-1} and contained	ains 3.46 g of	3
iron per kg	g. Calculate the	number of iron a	toms in each	molecule of had	emoglobin.	_
			Answer:			
						1

CHEM1611	2006-J-3	June 2006	22/31(a)
• If 50 mL of a 0.10 M of BaCl ₂ , what mass	I solution of AgNO ₃ is mixed with of AgCl(s) will precipitate from t	n 50 mL of a 0.040 M solution he reaction?	on Marks 3
	Answer:		
What is the concentr	ation of NO₃ [−] ions in the final sol	ution from the reaction abov	e?
	Answer:		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks

4

• Tranexamic acid, *trans*-(4-aminomethyl)cyclohexanecarboxylic acid, is used for the treatment of severe haemorrhage in patients with haemophilia.

Provide the requested information for each of the indicated atoms in tranexamic acid.

Atom	Geometric arrangement of the electron pairs around the atom	Hybridisation of the atom	Geometry/shape of σ -bonding electron pairs around the atom
C-1			
C-2			
O-3			
N-4			

• Consider the boiling points of the compounds 1-propanol, 1-propanethiol and 1-propaneselenol shown in the table below?

Compound	CH ₃ CH ₂ CH ₂ OH	CH ₃ CH ₂ CH ₂ SH	CH ₃ CH ₂ CH ₂ SeH
Boiling point (° C)	97.2	67.8	147.0

With reference to intermolecular forces, explain briefly why the boiling points increase in the order $CH_3CH_2CH_2SH < CH_3CH_2CH_2OH < CH_3CH_2CH_2SeH$.

3

CHEM1611		2006-J-5		June 2006	22/31(a)
• Consider t	he following equat BrO(aq) + NH	ion. 3(aq) 🗲	BrO ⁻ (aq)	+ NH4 ⁺ (aq)	Marks 5
Name all o	of the species in this	s equation.			
HBrO					
BrO ⁻					
NH ₃					
$\mathrm{NH_4}^+$					
Complete calculated given to ca	the following table . Mark with a cross alculate a value.	by giving the constant $s(\mathbf{x})$ those cells	Trect pK_a or pK_b for which insuf	, value where it can ficient data have bee	be en
Species	HBrO	NH ₃	BrO ⁻	$\mathrm{NH_4}^+$	
pK_a of acid	8.64				
pK_b of base		4.76			
				6 1	

Determine on which side (left or right hand side) the equilibrium for the reaction above will lie. Provide a brief rationale for your answer.

(L)

Give the structure of a constitutional isom	ner of (J).

Outline a reaction sequence that converts benzene into 1-phenyl-1-propanol (J) and that also uses propionaldehyde as a reactant somewhere in the sequence. Any solvents and inorganic reagents may be used. More than one step is required. Show clearly the reagents you would use and draw constitutional formulas for any intermediate compounds.

propionaldehyde benzene (propanal) Η

(K)

CHEM1611	2006-J-7	June 2006	22/31(a)
• A stick representat maintenance drug	tion for the active enantiomer in the treatment of heroin add	of methadone, an analgesic used as liction, is shown below.	a Marks 6
	N		
Give the molecula	r formula of methadone.		
Methadone contain stereogenic centre	ns a stereogenic centre. List t in descending order of priori	he substituents attached to this ty according to the sequence rules.	
Highest priority priority		Lowest	
What is the stereod List the functional	chemistry at this stereocentre	? Write (<i>R</i>) or (<i>S</i>).	_
Treatment of meth structures of (X) a	adone with NaBH ₄ gives con nd (Y).	pounds (\mathbf{X}) and (\mathbf{Y}) . Draw the	
(X)	(Y)		
What is the stereo	chemical relationship between	n compounds (X) and (Y)?	

CHEM1611

2006-J-8	

9

June 2006

• Complete the following table.		
STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
CH ₃ CH ₂ CH ₂ Br		$\begin{array}{c} CH_2CH_2CH_3\\ Br^{\ominus} \overset{\oplus}{\to} \\ N(CH_3)_3\end{array}$
Br	 Mg / dry ether CO₂ H[⊕]/ H₂O 	
}—s—s—<	Zn / H^{\oplus}	
HO	$[Ag(NH_3)_2]^{\oplus} / OH^{\ominus}$	
$CH_{3} \longrightarrow C \longrightarrow CH_{2}CH_{2}CH_{3}$	$H^{\oplus}/H_2O/heat$	
	HBr / CCl4 (solvent)	
СООН		CH ₂ OH

Marks • Consider the following two monosaccharides A and B. 7 CH₂OH CH₂OH OH ΟH HQ ́Н ОН Η OH ÓН ĊН ÓН A: α-D-galactopyranose **B**: β-D-ribofuranose Give the Fischer projections of the open chain form of A and B. Fischer projection of D-galactose Fischer projection of D-ribose Give the products obtained when D-ribose is treated with the following reagents. Acidified methanol NaBH₄ in methanol solvent Draw the Haworth structure of a non-reducing disaccharide, which yields D-galactose and D-ribose on acid hydrolysis.

June 2006

• Name the following compounds.						
но						
Br						

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

10

2006-J-12 June 2006 Marks • The structure of the naturally occurring tetrapeptide His-Phe-Ala-Glu, A, is shown below as the zwitterion. $\overset{\oplus}{\operatorname{H_3N}} - \overset{\operatorname{CH}-\operatorname{CO}-\operatorname{NH}-\operatorname{CH}-\operatorname{CO}-\operatorname{NH}-\operatorname{CH}-\operatorname{CO}-\operatorname{NH}-\operatorname{CH}-\operatorname{CO}_2}{\overset{|}{\operatorname{CH}_2} \overset{|}{\operatorname{CH}_2} \overset{|}{\operatorname{CH}_3} \overset{\ominus}{\operatorname{CH}_3}$ Α ĊOOH Give the product(s) obtained when A is treated with cold 1 M NaOH solution. Give the Fischer projections of the four L-amino acids in their correct ionic states obtained from the vigorous basic hydrolysis (6 M KOH) of A.

The heterocycle present in the sidechain of histidine is imidazole, whose structure is shown on the right. Give the structure of the product formed when imidazole is treated with HCl. State, giving reasons, whether the product is aromatic.

What is the major species present when histidine is dissolved in water at pH 1. The pK_a values of histidine are 1.82 (-COOH), 9.17 (-NH₃^{\oplus}) and 6.04 (sidechain).

CHEM1611 - CHEMISTRY 1A (PHARMACY)

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Deci	mal fract	ions	Deci	Decimal multiples						
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol					
10^{-3}	milli	m	10 ³	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	Μ					
10^{-9}	nano	n	10 ⁹	giga	G					
10^{-12}	pico	р								

CHEM1611 - CHEMISTRY 1A (PHARMACY)

Standard Reduction Potentials, E°	
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\mathrm{Sn}^{4+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$\mathrm{Li}^{+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	-3.04

CHEM1611 - CHEMISTRY 1A (PHARMACY)

Quantum Chemistry	Electrochemistry						
$E = h v = h c / \lambda$	$\Delta G^{\circ} = -nFE^{\circ}$						
$\lambda = h/mv$	Moles of $e^- = It/F$						
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$						
$E = Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$						
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$						
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$						
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$						
Acids and Bases	Gas Laws						
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT						
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$						
$pH = pK_a + \log\{[A^-] / [HA]\}$							
Colligative properties	Kinetics						
$\pi = cRT$	$t_{\frac{1}{2}} = \ln 2/k$						
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$						
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$						
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k_2} = \frac{E_a}{(1 - \frac{1}{k_1})}$						
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2'$						
Radioactivity	Thermodynamics & Equilibrium						
$t_{\frac{1}{2}} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$						
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$						
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$						
14 C age = 8033 ln(A_0/A_t)	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$						
Polymers	Mathematics						
$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$						
	$\ln x = 2.303 \log x$						

Useful formulas

9	
2	
5	
e	
E	
Ŀ	

CHEM1611 – CHEMISTRY 1A (PHARMACY)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1																2
HYDROGEN																	He
1.008																	4.003
3	4											5	6	7	8	9	10
LITHIUM	BERYLLIUM											BORON B	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON
6 .941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
SODIUM	MAGNESIUM											ALUMINIU?	I SILICON	PHOSPHORUS	SULFUR	CHLORINE	ARGON
IN a 22.99	NIg 24.31											AI 26.98	SI 28.09	P 30.97	S 32.07	CI 35.45	Ar 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITANIU	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
K	Ca	SC			Cr	NIN 54.04	Fe	C0	NI 58.60	Cu 63 55	Zn	Ga	Ge	AS	Se	Br	Kr
39.10	40.08 38	44.90 30	47.8	5 <u>50.94</u> /1	12.00	/3	55.85 AA	38.93 15	J8.09	03.33 A7	/18	/10	50	51	52	79.90 53	<u>83.80</u> 54
RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONI	M NIOBIUM	H Z MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUN			ANTIMONY	TELLURIUM	IODINE	XENON
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.2	2 92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.4) 114.82	2 118.69	121.75	127.60	126.90	131.30
DD CAESIUM	DO BARIUM	5/-/1	1 Z hafniu	1 TANTALUN	/4 tungsten	/ J RHENIUM	/0 osmium	/ / IRIDIUM	/ 8 platinum	79 GOLD	80 MERCURY	81 THALLIUM	82 LEAD	83 bismuth	84 POLONIUM	85 ASTATINE	80 RADON
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34		178.4	9 180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.5	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87 FRANCIUM	88 BADIUM	89-103	3 104 RUTHERFOR	105	106 SEABORGIUM	107 BOHRIUM	108 HASSIUM	109 meitnerium									
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt									
[223.0]	[226.0]		[261	[262]	[266]	[262]	[265]	[266]									
								1									T1
	57	7	58	59	60	61	62	63	64	6	5	66	67	68	69	70	71
LANTHANID	DES LANTHA		Ce	PRASEODYMIUM	Nd	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINI	Т	b	Dv	Но	ErBIUM	Tm	YTTERBIUM	LUTEHUM
	138.	91 14	40.12	140.91	144.24	[144.9]	150.4	151.96	157.2	5 158	.93	162.50	164.93	167.26	168.93	173.04	174.97
	89)	90	91	92	93	94	95	96	9	7	98	99	100	101	102	103
ACTINIDES	S ACTINI	UM TI	IORIUM Th	PROTACTINIUM Pa	URANIUM	NEPTUNIUM Nn	PLUTONIUM P11	AMERICIUM		BERKEI	LIUM C.		EINSTEINIUM Es	FERMIUM Fm	MENDELEVIUM	NOBELIUM	LAWRENCIUM
	[227	.0] 23	32.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1	[] [247	7.1]	252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]
	<u> </u>		-														_ <u> </u>

PERIODIC TABLE OF THE ELEMENTS

22/31(b)