#### Topics in the June 2007 Exam Paper for CHEM1611

Click on the links for resources on each topic.

#### 2007-J-2:

- Assumed Knowledge
- Chemical Bonding

#### 2007-J-3:

- The Shapes of Molecules
- Intermolecular forces
- Acids and Bases
- Assumed Knowledge

#### 2007-J-4:

Assumed Knowledge

#### 2007-J-5:

• Introduction to Organic Chemistry

#### 2007-J-6:

- Aromatic Hydrocarbons
- Organic Halogen Compounds
- Aldehydes and Ketones

#### 2007-J-7:

• Heterocyclic Compounds

#### 2007-J-8:

Alkenes

#### 2007-J-9:

- Introduction to Organic Chemistry
- Stereochemistry

#### 2007-J-10:

Aromatic Hydrocarbons

#### 2007-J-11:

- Aromatic Hydrocarbons
- Aldehydes and Ketones

#### 2007-J-12:

Carbohydrates

#### 2007-J-13:

• Amino Acids, Peptides and Proteins

# 22/31(a) The University of Sydney

#### CHEM1611 - CHEMISTRY 1A (PHARMACY)

#### CONFIDENTIAL

#### **FIRST SEMESTER EXAMINATION**

JUNE 2007 <u>TIME ALLOWED: THREE HOURS</u>

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

| FAMILY | SID    |  |
|--------|--------|--|
| NAME   | NUMBER |  |
| OTHER  | TABLE  |  |
| NAMES  | NUMBER |  |

#### INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 18 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent table.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used.
   Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- A Periodic Table and numerical values required for any question may be found on a separate data sheet.
- Page 20 is for rough working only.

### **OFFICIAL USE ONLY**

# Multiple choice section Marks Pages Max Gained 2-7 28

#### **Short answer section**

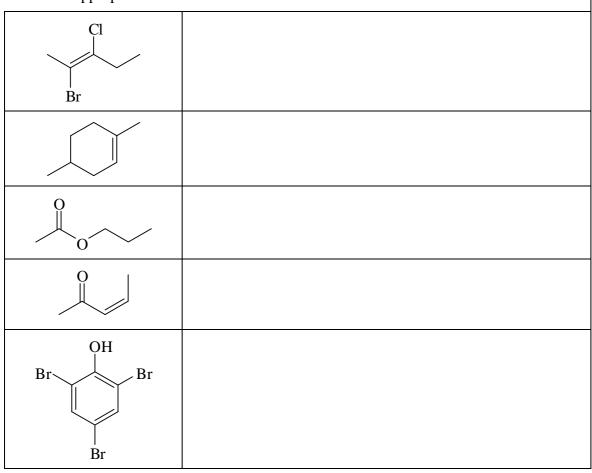
|       | Marks |       |   |        |
|-------|-------|-------|---|--------|
| Page  | Max   | Gaine | d | Marker |
| 8     | 10    |       |   |        |
| 9     | 7     |       |   |        |
| 10    | 6     |       |   |        |
| 11    | 5     |       |   |        |
| 12    | 5     |       |   |        |
| 13    | 5     |       |   |        |
| 14    | 6     |       |   |        |
| 15    | 6     |       |   |        |
| 16    | 2     |       |   |        |
| 17    | 8     |       |   |        |
| 18    | 6     |       |   |        |
| 19    | 6     |       |   |        |
| Total | 72    |       |   |        |

| CHEM1611    | 2007-J-2 | 22/31(a) |
|-------------|----------|----------|
| CIILIVIIOII | 2007-J-Z | 22/31(a) |

| CO <sub>2</sub> Na <sub>2</sub> CrO <sub>4</sub> FeCl <sub>3</sub> ·3H <sub>2</sub> O | Systematic na                                                                                                                                        |                                                                                 | number                                                     | d electrons              |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------|
| Na <sub>2</sub> CrO <sub>4</sub> FeCl <sub>3</sub> ·3H <sub>2</sub> O                 | potassium sul                                                                                                                                        |                                                                                 |                                                            |                          |
|                                                                                       | potassium sul                                                                                                                                        |                                                                                 |                                                            |                          |
| Draw the Lewis                                                                        | potassium sul                                                                                                                                        |                                                                                 |                                                            |                          |
| Draw the Lewis                                                                        | 1                                                                                                                                                    | fate                                                                            |                                                            |                          |
| Dian the Lewis                                                                        | structures, showing all val                                                                                                                          | ence electrons for                                                              | the following                                              | species.                 |
| CH <sub>3</sub> <sup>-</sup>                                                          |                                                                                                                                                      | CH <sub>3</sub> <sup>+</sup>                                                    |                                                            |                          |
|                                                                                       |                                                                                                                                                      |                                                                                 |                                                            |                          |
|                                                                                       |                                                                                                                                                      |                                                                                 |                                                            |                          |
|                                                                                       |                                                                                                                                                      |                                                                                 |                                                            |                          |
| Indicate which o                                                                      | f these species you expect                                                                                                                           | will be more stable                                                             | e and explain                                              | why.                     |
|                                                                                       |                                                                                                                                                      |                                                                                 |                                                            |                          |
|                                                                                       |                                                                                                                                                      |                                                                                 |                                                            |                          |
| molecule of Des<br>with an iron-ove<br>Assuming the pa                                | erophore-based drug that is<br>feral (molecular formula: or<br>rload disease had an exces<br>atient had a total blood volumplex all of the excess Fe | $C_{25}H_{48}O_8N_6$ ) can best of $5.34 \times 10^{-4}$ M tume of 4.84 L, what | ind one Fe <sup>3+</sup> io<br>Fe <sup>3+</sup> in her blo | on. A patient oodstream. |

Answer:

CHEM1611 2007-J-3 22/31(a)


|   | 200, 00                                                                                                                                                                                                                                                                                                                       | ==, 01(a)  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| • | Glycine, NH <sub>2</sub> CH <sub>2</sub> COOH, the simplest of all naturally occurring amino acids, has a melting point of 292 °C. The p $K_a$ of the acid group is 2.35 and the p $K_a$ associated with the amino group is 9.78. Draw a structure that indicates the charges on the molecule at the physiological pH of 7.4. | Marks<br>5 |
|   |                                                                                                                                                                                                                                                                                                                               |            |
|   | Describe the hybridisation of the two carbon atoms and the nitrogen atom in glycine and the geometry of the atoms surrounding these three atoms.                                                                                                                                                                              |            |
|   |                                                                                                                                                                                                                                                                                                                               |            |
|   |                                                                                                                                                                                                                                                                                                                               |            |
|   | Glycine has an unusually high melting point for a small molecule. Suggest a reason for this.                                                                                                                                                                                                                                  |            |
|   |                                                                                                                                                                                                                                                                                                                               |            |
|   |                                                                                                                                                                                                                                                                                                                               |            |
| • | Many gases are available for use in compressed gas cylinders, in which they are stored at high pressures. Calculate the mass of oxygen gas that can be stored at 20 °C and 170 atm pressure in a cylinder with a volume of 60.0 L.                                                                                            | 2          |
|   |                                                                                                                                                                                                                                                                                                                               |            |
|   | A marroom                                                                                                                                                                                                                                                                                                                     |            |
|   | Answer:                                                                                                                                                                                                                                                                                                                       | 1          |

CHEM1611 2007-J-4 22/31(a)

|   |                                                                                                    |                                                                                     | Manlea     |
|---|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------|
| • | If 20.0 mL of a 0.100 M solution of sodiu 0.200 M solution of zinc chloride, what me the reaction? | m phosphate is mixed with 25.0 mL of a mass of zinc phosphate will precipitate from | Marks<br>6 |
|   |                                                                                                    |                                                                                     |            |
|   |                                                                                                    |                                                                                     |            |
|   |                                                                                                    |                                                                                     |            |
|   |                                                                                                    |                                                                                     |            |
|   |                                                                                                    |                                                                                     |            |
|   |                                                                                                    |                                                                                     |            |
|   |                                                                                                    | Answer:                                                                             |            |
|   | What is the final concentration of zinc ior                                                        | ns in solution after the above reaction?                                            |            |
|   |                                                                                                    |                                                                                     |            |
|   |                                                                                                    |                                                                                     |            |
|   |                                                                                                    |                                                                                     |            |
|   |                                                                                                    |                                                                                     |            |
|   |                                                                                                    | Answer:                                                                             | -<br>-     |
|   | What is the final concentration of sodium                                                          | ions in solution after the above reaction?                                          | -          |
|   |                                                                                                    |                                                                                     |            |
|   |                                                                                                    |                                                                                     |            |
|   |                                                                                                    |                                                                                     |            |
|   |                                                                                                    |                                                                                     | -          |
|   |                                                                                                    | Answer:                                                                             |            |

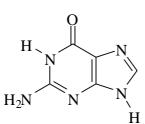
• Name the following compounds. Make sure you include stereochemical descriptors where appropriate.

Marks 5



THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• Complete the following table.


Marks 5

| STARTING MATERIAL | REAGENTS/<br>CONDITIONS                                                   | CONSTITUTIONAL<br>FORMULA(S) OF MAJOR<br>ORGANIC PRODUCT(S) |
|-------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|
|                   | 1. $\mathrm{CH_3MgBr}$ 2. $\mathrm{H}^{igodeta}/\mathrm{H_2O}$            |                                                             |
|                   |                                                                           | Cl                                                          |
| ОНОН              |                                                                           | ОН                                                          |
| ОН О              | $\left[\mathrm{Ag}(\mathrm{NH_3})_2\right]^{\oplus}/\mathrm{OH}^{\Theta}$ |                                                             |
|                   | CH <sub>3</sub> S <sup>⊕</sup> Na <sup>⊕</sup>                            | S                                                           |

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• The nucleic base guanine is drawn below as a keto tautomer. Draw two other tautomers of guanine.

Marks 2

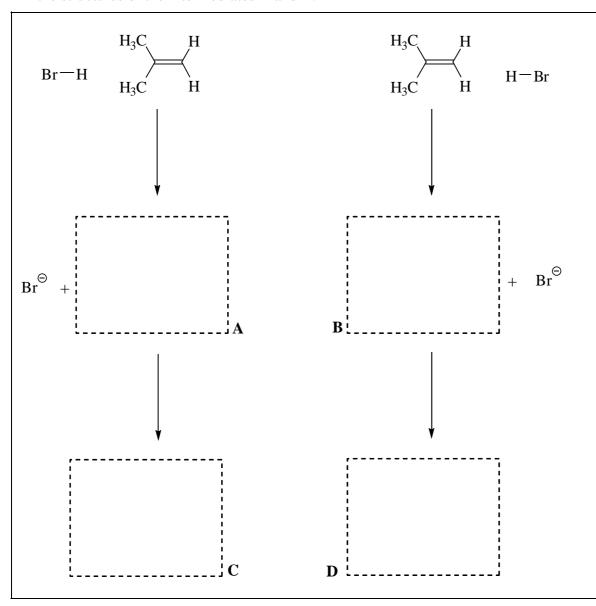


• The  $pK_b$ 's of two nitrogen-containing compounds are given below. Explain the difference in basicity of these two compounds.

3

$$\begin{array}{c} \text{CH}_2\text{CH}_3\\ \text{N-CH}_2\text{CH}_3\\ \text{CH}_2\text{CH}_3 \end{array}$$

В


$$H_2N$$

$$pK_b = 2.99$$

$$pK_b = 9.37$$

• When HBr adds to 2-methylpropene there are two possible products. Using the template below, draw the mechanism of this reaction to show the formation of both products, **C** and **D**. Use curly arrows to show the movement of electrons and draw the structures of the intermediates **A** and **B**.

Marks 6



Which product will be the major one? Explain why it will predominate.

What is the name given to this type of reaction?

• Salbutamol is available under the trade name Ventolin® as a racemic mixture of compounds. A stick representation of the compound is shown below.

Marks 6

| Give the molecular formula of salbutamol. |  |
|-------------------------------------------|--|
|-------------------------------------------|--|

| I | ist  | the | functional | groups | present i | n sall  | butamol.  |
|---|------|-----|------------|--------|-----------|---------|-----------|
| _ | 1150 | uic | Iuncuona   | STOUPS | present i | iii bui | Juluiiioi |

A competing manufacturer distributes a product, which contains only the (R)-enantiomer of salbutamol, under the trade name Xopenex®. On the structure above, mark the stereogenic centre with an asterisk (\*).

List the substituents attached to this stereogenic centre in descending order of priority according to the sequence rules by drawing them in the boxes below.

| Highest priority priority |                        |  | Lowest |  |  |
|---------------------------|------------------------|--|--------|--|--|
|                           |                        |  |        |  |  |
|                           |                        |  |        |  |  |
| Draw the (R) enan         | atiomer of salbutamol. |  |        |  |  |
| Draw the (K)-enam         | tionier of saloutamor. |  |        |  |  |



CHEM1611 2007-J-10 22/31(a)

| <ul> <li>Cyclopentadiene reacts with sodium hydroxide. Predict the structure of the product<br/>and explain its relative stability.</li> </ul> |        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
|                                                                                                                                                | NaOH ? |  |
|                                                                                                                                                |        |  |
|                                                                                                                                                |        |  |
|                                                                                                                                                |        |  |

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks 8

• Show clearly the reagents you would use to carry out the following chemical conversions. Draw constitutional formulas for any intermediate compounds. Note: More than one step is required in both cases.

• Consider the following two disaccharides **A** and **B**.

Marks 6

Classify each disaccharide as "reducing" or "not reducing".

A: B:

Both these disaccharides hydrolyse to give tagatose and mannose. Mannose is an aldohexose. Draw the Fischer projections of the open chain forms of mannose and tagatose.

|   | Fischer projection of mannose | Fischer projection of tagatose |
|---|-------------------------------|--------------------------------|
|   |                               |                                |
|   |                               |                                |
|   |                               |                                |
|   |                               |                                |
|   |                               |                                |
|   |                               |                                |
|   |                               |                                |
|   |                               |                                |
|   |                               |                                |
|   |                               |                                |
|   |                               |                                |
|   |                               |                                |
|   |                               |                                |
|   |                               |                                |
| L |                               |                                |

Mannose is classified as an aldohexose. What classification is given to tagatose?

Specify the above mannose as D-mannose or L-mannose.

Specify the above tagatose as D-tagatose or L-tagatose.

• The structure of L-tyrosine in 1 M HCl is drawn below. The  $pK_a$  for each acidic group is indicated on the diagram.

Marks 6

p
$$K_a = 10.07$$
 $pK_a = 2.20$ 
 $pK_a = 9.11$ 

Draw Fischer projections of the predominant species present in a solution of tyrosine at pH 11.0 and pH 9.6. Indicate the overall charge of these species.

Fischer projection of tyrosine at pH 11.0

Fischer projection of tyrosine at pH 9.6

Overall charge:

Overall charge:

What is the isoelectric point (pI) of tyrosine?

Draw the predominant species of tyrosine at the isoelectric point.

Fischer projection of tyrosine at its isoelectric point.

#### CHEM1611 - CHEMISTRY 1A (PHARMACY)

#### **DATA SHEET**

#### Physical constants

Avogadro constant,  $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ 

Faraday constant,  $F = 96485 \text{ C mol}^{-1}$ 

Planck constant,  $h = 6.626 \times 10^{-34} \,\mathrm{J s}$ 

Speed of light in vacuum,  $c = 2.998 \times 10^8 \text{ m s}^{-1}$ 

Rydberg constant,  $E_R = 2.18 \times 10^{-18} \text{ J}$ 

Boltzmann constant,  $k_{\rm B} = 1.381 \times 10^{-23} \,\mathrm{J K^{-1}}$ 

Permittivity of a vacuum,  $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ 

Gas constant,  $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ 

 $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ 

Charge of electron,  $e = 1.602 \times 10^{-19} \text{ C}$ 

Mass of electron,  $m_e = 9.1094 \times 10^{-31} \text{ kg}$ 

Mass of proton,  $m_p = 1.6726 \times 10^{-27} \text{ kg}$ 

Mass of neutron,  $m_{\rm n} = 1.6749 \times 10^{-27} \, {\rm kg}$ 

#### Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25  $^{\circ}$ C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and  $0 \, ^{\circ}\text{C} = 22.4 \, \text{L}$ 

Density of water at 298 K = 0.997 g cm<sup>-3</sup>

#### Conversion factors

| 1  atm = 760  mmHg = 101.3  kPa                  | $1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$ |
|--------------------------------------------------|-------------------------------------------------|
| 0 °C = 273 K                                     | $1 \text{ Hz} = 1 \text{ s}^{-1}$               |
| $1 L = 10^{-3} m^3$                              | $1 \text{ tonne} = 10^3 \text{ kg}$             |
| $1 \text{ Å} = 10^{-10} \text{ m}$               | $1 W = 1 J s^{-1}$                              |
| $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$ |                                                 |

#### Decimal fractions Decimal multiples Fraction **Prefix** Multiple Prefix Symbol Symbol $10^{-3}$ $10^{3}$ milli kilo k m $10^{-6}$ $10^{6}$ micro mega M μ $10^{-9}$ $10^{9}$ giga G nano n $10^{-12}$ pico p

# CHEM1611 - CHEMISTRY 1A (PHARMACY)

# Standard Reduction Potentials, E°

| Reaction                                                                                                          | $E^{\circ}$ / $V$ |
|-------------------------------------------------------------------------------------------------------------------|-------------------|
| $\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$                        | +1.82             |
| $Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$                                                                     | +1.72             |
| $MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$                                                   | +1.51             |
| $Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$                                                                          | +1.50             |
| $\text{Cl}_2 + 2\text{e}^- \rightarrow 2\text{Cl}^-(\text{aq})$                                                   | +1.36             |
| $O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$                                                                         | +1.23             |
| $Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$                                                                          | +1.18             |
| $MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$                                                           | +0.96             |
| $Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$                                                                          | +0.92             |
| $Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$                                                                            | +0.80             |
| $Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$                                                                     | +0.77             |
| $Cu^+(aq) + e^- \rightarrow Cu(s)$                                                                                | +0.53             |
| $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$                                                                          | +0.34             |
| $\operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}^{2+}(\operatorname{aq})$ | +0.15             |
| $2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$                                                                        | 0 (by definition) |
| $Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$                                                                            | -0.04             |
| $Pb^{2+}(aq) + 2e^- \rightarrow Pb(s)$                                                                            | -0.13             |
| $\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$                             | -0.14             |
| $Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$                                                                            | -0.24             |
| $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$                                                                          | -0.40             |
| $Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$                                                                            | -0.44             |
| $Cr^{3+}(aq) + 3e^- \rightarrow Cr(s)$                                                                            | -0.74             |
| $Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$                                                                            | -0.76             |
| $2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$                                                                     | -0.83             |
| $\operatorname{Cr}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Cr}(\operatorname{s})$       | -0.89             |
| $Al^{3+}(aq) + 3e^- \rightarrow Al(s)$                                                                            | -1.68             |
| $Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$                                                                            | -2.36             |
| $Na^{+}(aq) + e^{-} \rightarrow Na(s)$                                                                            | -2.71             |
| $Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$                                                                          | -2.87             |
| $Li^{+}(aq) + e^{-} \rightarrow Li(s)$                                                                            | -3.04             |
| <del>-</del>                                                                                                      |                   |

# CHEM1611 - CHEMISTRY 1A (PHARMACY)

Useful formulas

| Osejui jormulas                                                              |                                                                                    |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| <b>Quantum Chemistry</b>                                                     | Electrochemistry                                                                   |  |  |  |  |  |  |  |  |  |
| $E = hv = hc/\lambda$                                                        | $\Delta G^{\circ} = -nFE^{\circ}$                                                  |  |  |  |  |  |  |  |  |  |
| $\lambda = h/mv$                                                             | $Moles\ of\ e^- = It/F$                                                            |  |  |  |  |  |  |  |  |  |
| $4.5k_{\rm B}T = hc/\lambda$                                                 | $E = E^{\circ} - (RT/nF) \times 2.303 \log Q$                                      |  |  |  |  |  |  |  |  |  |
| $E = -Z^2 E_{\mathcal{R}}(1/n^2)$                                            | $= E^{\circ} - (RT/nF) \times \ln Q$                                               |  |  |  |  |  |  |  |  |  |
| $\Delta x \cdot \Delta(mv) \ge h/4\pi$                                       | $E^{\circ} = (RT/nF) \times 2.303 \log K$                                          |  |  |  |  |  |  |  |  |  |
| $q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$                         | $= (RT/nF) \times \ln K$                                                           |  |  |  |  |  |  |  |  |  |
|                                                                              | $E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$                       |  |  |  |  |  |  |  |  |  |
| Acids and Bases                                                              | Gas Laws                                                                           |  |  |  |  |  |  |  |  |  |
| $pK_{w} = pH + pOH = 14.00$                                                  | PV = nRT                                                                           |  |  |  |  |  |  |  |  |  |
| $pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$                               | $(P + n^2 a/V^2)(V - nb) = nRT$                                                    |  |  |  |  |  |  |  |  |  |
| $pH = pK_a + log\{[A^-] / [HA]\}$                                            |                                                                                    |  |  |  |  |  |  |  |  |  |
| Colligative properties                                                       | Kinetics                                                                           |  |  |  |  |  |  |  |  |  |
| $\pi = cRT$                                                                  | $t_{1/2} = \ln 2/k$                                                                |  |  |  |  |  |  |  |  |  |
| $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ | $k = Ae^{-Ea/RT}$                                                                  |  |  |  |  |  |  |  |  |  |
| p = kc                                                                       | $ \ln[A] = \ln[A]_{o} - kt $                                                       |  |  |  |  |  |  |  |  |  |
| $\Delta T_{ m f} = K_{ m f} m$                                               | $\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right)$ |  |  |  |  |  |  |  |  |  |
| $\Delta T_{\rm b} = K_{\rm b} m$                                             | $k_1 R T_1 T_2$                                                                    |  |  |  |  |  |  |  |  |  |
| Radioactivity                                                                | Thermodynamics & Equilibrium                                                       |  |  |  |  |  |  |  |  |  |
| $t_{1/2} = \ln 2/\lambda$                                                    | $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$                         |  |  |  |  |  |  |  |  |  |
| $A = \lambda N$                                                              | $\Delta G = \Delta G^{\circ} + RT \ln Q$                                           |  |  |  |  |  |  |  |  |  |
| $\ln(N_0/N_t) = \lambda t$                                                   | $\Delta G^{\circ} = -RT \ln K$                                                     |  |  |  |  |  |  |  |  |  |
| $^{14}$ C age = 8033 ln( $A_0/A_t$ ) years                                   | $K_{\rm p} = K_{\rm c} \left( RT \right)^{\Delta n}$                               |  |  |  |  |  |  |  |  |  |
| Miscellaneous                                                                | Mathematics                                                                        |  |  |  |  |  |  |  |  |  |
| $A = -\log 10 \frac{I}{I_0}$                                                 | If $ax^2 + bx + c = 0$ , then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$             |  |  |  |  |  |  |  |  |  |
| $A = \varepsilon c l$                                                        | $ \ln x = 2.303 \log x $                                                           |  |  |  |  |  |  |  |  |  |
| $E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$                           |                                                                                    |  |  |  |  |  |  |  |  |  |

## PERIODIC TABLE OF THE ELEMENTS

| 1                     | 2               | 3              | 4                   | 5              | 6               | 7                   | 8                  | 9                | 10              | 11                | 12            | 13             | 14              | 15            | 16             | 17             | 18                 |
|-----------------------|-----------------|----------------|---------------------|----------------|-----------------|---------------------|--------------------|------------------|-----------------|-------------------|---------------|----------------|-----------------|---------------|----------------|----------------|--------------------|
| 1                     |                 |                |                     |                |                 |                     |                    |                  |                 |                   |               |                |                 |               |                |                | 2                  |
| HYDROGEN<br>H         |                 |                |                     |                |                 |                     |                    |                  |                 |                   |               |                |                 |               |                |                | нешим<br><b>Не</b> |
| 1.008                 |                 |                |                     |                |                 |                     |                    |                  |                 |                   |               |                |                 |               |                |                | 4.003              |
| 3                     | 4               |                |                     |                |                 |                     |                    |                  |                 |                   |               | 5              | 6               | 7             | 8              | 9              | 10                 |
| Lithium               | Beryllium<br>Be |                |                     |                |                 |                     |                    |                  |                 |                   |               | BORON B        | CARBON          | NITROGEN N    | OXYGEN         | FLUORINE       | Neon<br>Ne         |
| 6.941                 | 9.012           |                |                     |                |                 |                     |                    |                  |                 |                   |               | 10.81          | 12.01           | 14.01         | 16.00          | 19.00          | 20.18              |
| 11                    | 12              |                |                     |                |                 |                     |                    |                  |                 |                   |               | 13             | 14              | 15            | 16             | 17             | 18                 |
| SODIUM                | MAGNESIUM       |                |                     |                |                 |                     |                    |                  |                 |                   |               | ALUMINIUM      | SILICON         | PHOSPHORUS    | SULFUR         | CHLORINE       | ARGON              |
| Na                    | Mg              |                |                     |                |                 |                     |                    |                  |                 |                   |               | Al             | Si              | P             | S              | Cl             | Ar                 |
| 22.99                 | 24.31           |                | г г                 |                | 1               |                     |                    | ı                | 1               | 1                 |               | 26.98          | 28.09           | 30.97         | 32.07          | 35.45          | 39.95              |
| 19<br>POTASSIUM       | 20              | 21<br>scandium | 22<br>TITANIUM      | 23<br>Vanadium | 24<br>chromium  | 25<br>manganese     | 26<br>IRON         | 27               | 28<br>NICKEL    | 29<br>COPPER      | 30<br>zinc    | 31<br>gallium  | 32<br>GERMANIUM | 33<br>ARSENIC | 34<br>SELENIUM | 35<br>BROMINE  | 36<br>KRYPTON      |
| K                     | Ca              | Scannica       | Ti                  | V              | Cr              | Mn                  | Fe                 | Co               | Ni              | Cu                | Zn            | Ga             | Ge              | As            | Se             | Br             | Kr                 |
| 39.10                 | 40.08           | 44.96          | 47.88               | 50.94          | 52.00           | 54.94               | 55.85              | 58.93            | 58.69           | 63.55             | 65.39         | 69.72          | 72.59           | 74.92         | 78.96          | 79.90          | 83.80              |
| 37                    | 38              | 39             | 40                  | 41             | 42              | 43                  | 44                 | 45               | 46              | 47                | 48            | 49             | 50              | 51            | 52             | 53             | 54                 |
| RUBIDIUM              | STRONTIUM       | YTTRIUM        | ZIRCONIUM           | NIOBIUM        | MOLYBDENUM      | TECHNETIUM          | RUTHENIUM          | RHODIUM          | PALLADIUM       | SILVER            | CADMIUM       | INDIUM         | TIN             | ANTIMONY      | TELLURIUM      | IODINE         | XENON              |
| Rb                    | Sr              | Y              | Zr                  | Nb             | Mo              | Tc                  | Ru                 | Rh               | Pd              | Ag                | Cd            | In             | Sn              | Sb            | Te             | I              | Xe                 |
| 85.47                 | 87.62           | 88.91          | 91.22               | 92.91          | 95.94           | [98.91]             | 101.07             | 102.91           | 106.4           | 107.87            | 112.40        | 114.82         | 118.69          | 121.75        | 127.60         | 126.90         | 131.30             |
| 55<br>CAESIUM         | 56<br>BARIUM    | 57-71          | 72<br>HAFNIUM       | 73<br>TANTALUM | 74<br>TUNGSTEN  | 75<br>RHENIUM       | 76<br>OSMIUM       | 77<br>IRIDIUM    | 78<br>PLATINUM  | 79<br>GOLD        | 80<br>mercury | 81<br>THALLIUM | 82<br>LEAD      | 83<br>візмитн | 84<br>POLONIUM | 85<br>astatine | 86<br>RADON        |
| Cs                    | Ba              |                | Hf                  | Ta             | W               | Re                  | Os                 | Ir               | Pt              | Au                | Hg            | Tl             | Pb              | Bi            | Po             | At             | Rn                 |
| 132.91                | 137.34          |                | 178.49              | 180.95         | 183.85          | 186.2               | 190.2              | 192.22           | 195.09          | 196.97            | 200.59        | 204.37         | 207.2           | 208.98        | [210.0]        | [210.0]        | [222.0]            |
| 87                    | 88              | 89-103         |                     | 105            | 106             | 107                 | 108                | 109              | 110             | 111               |               |                |                 |               |                |                |                    |
| FRANCIUM<br><b>Fr</b> | RADIUM<br>Ra    |                | RUTHERFORDIUM<br>Rf | Db             | SEABORGIUM      | Bh                  | HASSIUM<br>HS      | MEITNERIUM  N/I+ | DARMSTADTIUM    | ROENTGENIUM  D  G |               |                |                 |               |                |                |                    |
| [223.0]               | [226.0]         |                | [261]               | שט<br>[262]    | <b>Sg</b> [266] | <b>DII</b><br>[262] | <b>ns</b><br>[265] | <b>Mt</b> [266]  | <b>Ds</b> [271] | <b>Rg</b> [272]   |               |                |                 |               |                |                |                    |
| [223.0]               | [220.0]         | <u> </u>       | [201]               | [202]          | [200]           | [202]               | [203]              | [200]            | [2/1]           | [212]             |               |                |                 |               |                |                |                    |

| LANTHANIDES | 57<br>LANTHANUM<br><b>La</b> | 58<br>CERIUM<br>Ce | 59<br>PRASEODYMIUM<br><b>Pr</b> | 60<br>NEODYMIUM<br><b>Nd</b> | 61<br>PROMETHIUM<br><b>Pm</b> | 62<br>Samarium<br><b>Sm</b> | 63<br>Europium<br><b>Eu</b> | 64<br>gadolinium<br><b>Gd</b> | 65<br>terbium<br><b>Tb</b> | 66<br>Dysprosium<br><b>Dy</b> | 67<br>ногміим<br><b>Но</b> | 68<br>erbium<br><b>Er</b> | 69<br>THULIUM<br><b>Tm</b> | 70<br>ytterbium<br><b>Yb</b> | 71<br>Lu<br>Lu    |
|-------------|------------------------------|--------------------|---------------------------------|------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------|----------------------------|-------------------------------|----------------------------|---------------------------|----------------------------|------------------------------|-------------------|
|             | 138.91                       | 140.12             | 140.91                          | 144.24                       | [144.9]                       | 150.4                       | 151.96                      | 157.25                        | 158.93                     | 162.50                        | 164.93                     | 167.26                    | 168.93                     | 173.04                       | 174.97            |
| ACTINIDES   | 89<br>actinium               | 90<br>THORIUM      | 91<br>PROTACTINIUM              | 92<br>uranium                | 93<br>NEPTUNIUM               | 94<br>PLUTONIUM             | 95<br>AMERICIUM             | 96<br>CURIUM                  | 97<br>BERKELLIUM           | 98<br>CALIFORNIUM             | 99<br>EINSTEINIUM          | 100<br>FERMIUM            | 101<br>mendelevium         | 102<br>NOBELIUM              | 103<br>LAWRENCIUM |
|             | Ac                           | Th                 | Pa                              | $\mathbf{U}$                 | Np                            | Pu                          | Am                          | Cm                            | Bk                         | Cf                            | Es                         | Fm                        | Md                         | No                           | Lr                |
|             | [227.0]                      | 232.04             | [231.0]                         | 238.03                       | [237.0]                       | [239.1]                     | [243.1]                     | [247.1]                       | [247.1]                    | [252.1]                       | [252.1]                    | [257.1]                   | [256.1]                    | [259.1]                      | [260.1]           |