The University of Sydney

CHEM1612 - CHEMISTRY 1B (PHARMACY)
SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2006

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

<table>
<thead>
<tr>
<th>FAMILY NAME</th>
<th>SID NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER NAMES</td>
<td>TABLE NUMBER</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.

- Complete the examination paper in INK.

- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.

- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.

- Each new question of the short answer section begins with a •.

- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.

- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.

- Pages 17 and 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

<table>
<thead>
<tr>
<th>Pages</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-10</td>
<td>35</td>
</tr>
</tbody>
</table>

Short answer section

<table>
<thead>
<tr>
<th>Page</th>
<th>Marks</th>
<th>Marker</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>
The final step in the industrial production of urea, \((\text{NH}_2\text{H})_2\text{CO}\), is:

\[
\text{CO}_2(g) + 2\text{NH}_3(g) \rightarrow \text{H}_2\text{O}(g) + (\text{NH}_2\text{H})_2\text{CO}(s) \quad \Delta H^\circ = -90.1 \text{ kJ mol}^{-1}
\]

Using the following data, calculate the standard enthalpy of formation of solid urea.

\[
\begin{align*}
4\text{NH}_3(g) + 3\text{O}_2(g) &\rightarrow 6\text{H}_2\text{O}(g) + 2\text{N}_2(g) \quad \Delta H^\circ = -1267.2 \text{ kJ mol}^{-1} \\
\text{C}(s) + \text{O}_2(g) &\rightarrow \text{CO}_2(g) \quad \Delta H^\circ = -393.5 \text{ kJ mol}^{-1} \\
2\text{H}_2(g) + \text{O}_2(g) &\rightarrow 2\text{H}_2\text{O}(g) \quad \Delta H^\circ = -483.6 \text{ kJ mol}^{-1}
\end{align*}
\]

The formation of urea in the industrial process is only spontaneous below 821 °C.

What is the value of the entropy change \(\Delta S^\circ\) (in J K\(^{-1}\) mol\(^{-1}\)) for the reaction?

Rationalise the sign of \(\Delta S^\circ\) in terms of the physical states of the reactants and products.
• The specific heat capacity of water is 4.18 J g\(^{-1}\) K\(^{-1}\) and the specific heat capacity of copper is 0.39 J g\(^{-1}\) K\(^{-1}\). If the same amount of energy were applied to a 1.0 mol sample of each substance, both initially at 25 °C, which substance would get hotter? Show all working.

Answer:

• Explain why the acidity of hydrogen halides increases with increasing halogen size \(i.e., K_a (HCl) < K_a (HBr) < K_a (HI)\), while the acidity of hypohalous acids decreases with increasing halogen size \(i.e., K_a (HOCl) > K_a (HOBr) > K_a (HOI)\).
• The K_a of benzoic acid is 6.3×10^{-5} M at 25°C.

Calculate the pH of a 0.0100 M aqueous solution of sodium benzoate (C_6H_5COONa).

Answer:

A buffer solution is prepared by adding 375 mL of this 0.0100 M aqueous solution of sodium benzoate to 225 mL of 0.0200 M aqueous benzoic acid. Calculate the pH of the buffer solution.

Answer:
“Water gas” is a mixture of combustible gases produced from steam and coal according to the following reaction:

\[
C(s) + H_2O(g) \rightarrow CO(g) + H_2(g) \quad \Delta H^\circ = 131 \text{ kJ mol}^{-1}
\]

The equation for the complete combustion of 1 mol of water gas (i.e. 0.5 mol CO(g) and 0.5 mol H_2(g)) can be written as:

\[
\frac{1}{2}CO(g) + \frac{1}{2}H_2(g) + \frac{1}{2}O_2(g) \rightarrow \frac{1}{2}CO_2(g) + \frac{1}{2}H_2O(g)
\]

Calculate the standard enthalpy of combustion of water gas, given the following thermochemical data.

\[
\begin{align*}
\Delta H^\circ_{\text{vap}} (H_2O) &= 44 \text{ kJ mol}^{-1} \\
\Delta H^\circ_{\text{f}} (H_2O(l)) &= -286 \text{ kJ mol}^{-1} \\
\Delta H^\circ_{\text{f}} (CO_2(g)) &= -393 \text{ kJ mol}^{-1}
\end{align*}
\]

Answer:
The CO(g) in water gas can be reacted further with H₂O(g) in the so-called “water-gas shift” reaction:

\[
\text{CO(g)} + \text{H}_2\text{O(g)} \rightleftharpoons \text{CO}_2(g) + \text{H}_2(g)
\]

At 900 K, \(K_c = 1.56\) for this reaction. A sample of water gas flowing over coal at 900 K contains a 1:1 mole ratio of CO(g) and H₂(g), as well as 0.250 mol L\(^{-1}\) H₂O(g). This sample is placed in a sealed container at 900 K and allowed to come to equilibrium, at which point it contains 0.070 mol L\(^{-1}\) CO₂(g). What was the initial concentration of CO(g) and H₂(g) in the sample?

\[
[\text{CO}] = [\text{H}_2] = \ldots
\]

If the walls of the container are chilled to below 100 °C, what will be the effect on the concentration of CO₂(g)?

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.
• The isomerisation of glucose-6-phosphate (G6P) to fructose-6-phosphate (F6P) is a key step in the metabolism of glucose for energy. At 298 K,

\[\text{G6P} \rightleftharpoons \text{F6P} \quad \Delta G^\circ = 1.67 \text{ kJ mol}^{-1} \]

Calculate the equilibrium constant for this process at 298 K.

Answer:

What is the free energy change (in kJ mol\(^{-1}\)) involved in a mixture of 3.00 mol of F6P and 2.00 mol of G6P reaching equilibrium at 298 K?

Answer:

Sketch a graph of \(G_{\text{sys}}\) versus “extent of reaction”, with a curve showing how \(G_{\text{sys}}\) varies as G6P is converted to F6P. Indicate the position on this curve corresponding to 3.00 mol of F6P and 2.00 mol of G6P.
• Assume that NaCl is the only significant solute in seawater. A 1.000 L sample of seawater at 25 ºC and 1 atm has a mass of 1.0275 kg and contains 33.0 g of NaCl. At what temperature would this seawater freeze? The freezing point depression constant of water is 1.86 ºC kg mol\(^{-1}\).

Answer:

The vapour pressure above pure H\(_2\)O is 23.76 mmHg at 25 ºC and 1 atm. Calculate the vapour pressure above this seawater under the same conditions.

Answer:

The desalination of seawater by reverse osmosis has been suggested as a way of alleviating water shortages in Sydney. What pressure (in Pa) would need to be applied to this seawater in order to force it through a semi-permeable membrane, yielding pure H\(_2\)O?

Answer:
• The molar solubility of lead(II) fluoride, PbF$_2$, is found to be 2.6×10^{-3} M at 25 °C. Calculate the value of K_{sp} for this compound at this temperature.

\[K_{sp} = \]

• Draw all stereoisomers of the complex ion of [Co(en)$_3$]Br$_3$.

(\text{en = ethylenediamine = NH}_2\text{CH}_2\text{CH}_2\text{NH}_2)

• Name the following complexes.

\[
\text{[Co(H}_2\text{O})_4]\text{Br}_2\text{Cl}
\]

\[
\text{K[Au(CN)}_2\text{]}
\]
• Write the chemical equation for the formation of the complex ion [Cd(NH₃)₄]²⁺.

Write the associated stability constant expression (K_{stab}).

• The physiological properties of chromium depend on its oxidation state. Consider the half reaction in which Cr(VI) is reduced to Cr(III).

\[
\text{CrO}_4^{2-} (\text{aq}) + 4\text{H}_2\text{O}(l) + 3e^- \rightarrow \text{Cr}('\text{OH}_3(s) + 5\text{OH}^-(aq) \quad E^0 = -0.13 \text{ V}
\]

Calculate the potential for this half reaction at 25 °C, where pH = 7.40 and [CrO₄²⁻ (aq)] = 1.0 × 10⁻⁶ M.

Answer:
Consider the following reaction at 298 K.

\[
\text{Ni}^{2+}(aq) + \text{Zn}(s) \rightleftharpoons \text{Ni}(s) + \text{Zn}^{2+}(aq)
\]

Calculate \(\Delta G^o \) for the cell. (Relevant electrode potentials can be found on the data page.)

<table>
<thead>
<tr>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Answer:

What is the value of the equilibrium constant for the reaction at 298 K?

Answer:

Express the overall reaction in voltaic cell notation.

Using a current of 2.00 A, how long (in minutes) will it take to plate out all of the silver from 0.250 L of a \(1.14 \times 10^{-2} \) M \(\text{Ag}^+(aq) \) solution?

Answer:
• If a medical procedure calls for 2.0 mg of 48V, what mass of isotope would be required to be able to use it exactly one week later? The half life of 48V is 1.61 days.

Answer:

• Describe how hydrophilic and hydrophobic colloids are stabilised in water.

• Calculate the standard free-energy change for the following reaction at 298 K.

\[
2\text{Au}(s) + 3\text{Mg}^{2+}(1.0\text{ M}) \rightarrow 2\text{Au}^{3+}(1.0\text{ M}) + 3\text{Mg}(s)
\]

Answer:
The major pollutants NO(g), CO(g), NO₂(g) and CO₂(g), which are emitted by cars, can react according to the following equation.

\[\text{NO}_2(g) + \text{CO}(g) \rightarrow \text{NO}(g) + \text{CO}_2(g) \]

The following rate data were collected at 225 °C.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>[NO₂]₀ (M)</th>
<th>[CO]₀ (M)</th>
<th>Initial rate (d[NO₂]/dt, M s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.263</td>
<td>0.826</td>
<td>1.44 × 10⁻⁵</td>
</tr>
<tr>
<td>2</td>
<td>0.263</td>
<td>0.413</td>
<td>1.44 × 10⁻⁵</td>
</tr>
<tr>
<td>3</td>
<td>0.526</td>
<td>0.413</td>
<td>5.76 × 10⁻⁵</td>
</tr>
</tbody>
</table>

Determine the rate law for the reaction.

Calculate the value of the rate constant at 225 °C.

\[\text{Answer:} \]

Calculate the rate of appearance of CO₂ when [NO₂] = [CO] = 0.500 M.

\[\text{Answer:} \]

Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.
CHEM1612 - CHEMISTRY 1B (PHARMACY)

DATA SHEET

Physical constants
Avogadro constant, \(N_A = 6.022 \times 10^{23} \text{ mol}^{-1} \)
Faraday constant, \(F = 96485 \text{ C mol}^{-1} \)
Planck constant, \(h = 6.626 \times 10^{-34} \text{ J s} \)
Speed of light in vacuum, \(c = 2.998 \times 10^8 \text{ m s}^{-1} \)
Rydberg constant, \(E_R = 2.18 \times 10^{-18} \text{ J} \)
Boltzmann constant, \(k_B = 1.381 \times 10^{-23} \text{ J K}^{-1} \)
Gas constant, \(R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \)
\(\quad = 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1} \)
Charge of electron, \(e = 1.602 \times 10^{-19} \text{ C} \)
Mass of electron, \(m_e = 9.1094 \times 10^{-31} \text{ kg} \)
Mass of proton, \(m_p = 1.6726 \times 10^{-27} \text{ kg} \)
Mass of neutron, \(m_n = 1.6749 \times 10^{-27} \text{ kg} \)

Properties of matter
Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L
Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L
Density of water at 298 K = 0.997 g cm\(^{-3}\)

Conversion factors
1 atm = 760 mmHg = 101.3 kPa
0 °C = 273 K
1 L = 10\(^{-3}\) m\(^3\)
1 Å = 10\(^{-10}\) m
1 eV = 1.602 \times 10^{-19} \text{ J}
1 Ci = 3.70 \times 10^{10} \text{ Bq}
1 Hz = 1 s\(^{-1}\)

Decimal fractions
<table>
<thead>
<tr>
<th>Fraction</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10(^{-3})</td>
<td>milli</td>
<td>m</td>
</tr>
<tr>
<td>10(^{-6})</td>
<td>micro</td>
<td>µ</td>
</tr>
<tr>
<td>10(^{-9})</td>
<td>nano</td>
<td>n</td>
</tr>
<tr>
<td>10(^{-12})</td>
<td>pico</td>
<td>p</td>
</tr>
</tbody>
</table>

Decimal multiples
<table>
<thead>
<tr>
<th>Multiple</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10(^3)</td>
<td>kilo</td>
<td>k</td>
</tr>
<tr>
<td>10(^6)</td>
<td>mega</td>
<td>M</td>
</tr>
<tr>
<td>10(^9)</td>
<td>giga</td>
<td>G</td>
</tr>
</tbody>
</table>
Standard Reduction Potentials, E°

<table>
<thead>
<tr>
<th>Reaction</th>
<th>E° / V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Co}^{3+}(aq) + e^- \rightarrow \text{Co}^{2+}(aq)$</td>
<td>+1.82</td>
</tr>
<tr>
<td>$\text{Ce}^{4+}(aq) + e^- \rightarrow \text{Ce}^{3+}(aq)$</td>
<td>+1.72</td>
</tr>
<tr>
<td>$\text{Au}^{3+}(aq) + 3e^- \rightarrow \text{Au}(s)$</td>
<td>+1.50</td>
</tr>
<tr>
<td>$\text{Cl}_2 + 2e^- \rightarrow 2\text{Cl}^-(aq)$</td>
<td>+1.36</td>
</tr>
<tr>
<td>$\text{O}_2 + 4\text{H}^+(aq) + 4e^- \rightarrow 2\text{H}_2\text{O}$</td>
<td>+1.23</td>
</tr>
<tr>
<td>$\text{Br}_2 + 2e^- \rightarrow 2\text{Br}^-(aq)$</td>
<td>+1.10</td>
</tr>
<tr>
<td>$\text{MnO}_2(s) + 4\text{H}^+(aq) + e^- \rightarrow 2\text{Mn}^{3+} + 2\text{H}_2\text{O}$</td>
<td>+0.96</td>
</tr>
<tr>
<td>$\text{Pd}^{2+}(aq) + 2e^- \rightarrow \text{Pd}(s)$</td>
<td>+0.92</td>
</tr>
<tr>
<td>$\text{Ag}^+(aq) + e^- \rightarrow \text{Ag}(s)$</td>
<td>+0.80</td>
</tr>
<tr>
<td>$\text{Fe}^{3+}(aq) + e^- \rightarrow \text{Fe}^{2+}(aq)$</td>
<td>+0.77</td>
</tr>
<tr>
<td>$\text{Cu}^+(aq) + e^- \rightarrow \text{Cu}(s)$</td>
<td>+0.53</td>
</tr>
<tr>
<td>$\text{Cu}^{2+}(aq) + 2e^- \rightarrow \text{Cu}(s)$</td>
<td>+0.34</td>
</tr>
<tr>
<td>$\text{Sn}^{4+}(aq) + 2e^- \rightarrow \text{Sn}^{2+}(aq)$</td>
<td>+0.15</td>
</tr>
<tr>
<td>$2\text{H}^+(aq) + 2e^- \rightarrow \text{H}_2(g)$</td>
<td>0 (by definition)</td>
</tr>
<tr>
<td>$\text{Fe}^{3+}(aq) + 3e^- \rightarrow \text{Fe}(s)$</td>
<td>−0.04</td>
</tr>
<tr>
<td>$\text{Pb}^{2+}(aq) + 2e^- \rightarrow \text{Pb}(s)$</td>
<td>−0.13</td>
</tr>
<tr>
<td>$\text{Sn}^{2+}(aq) + 2e^- \rightarrow \text{Sn}(s)$</td>
<td>−0.14</td>
</tr>
<tr>
<td>$\text{Ni}^{2+}(aq) + 2e^- \rightarrow \text{Ni}(s)$</td>
<td>−0.24</td>
</tr>
<tr>
<td>$\text{Co}^{2+}(aq) + 2e^- \rightarrow \text{Co}(s)$</td>
<td>−0.28</td>
</tr>
<tr>
<td>$\text{Fe}^{2+}(aq) + 2e^- \rightarrow \text{Fe}(s)$</td>
<td>−0.44</td>
</tr>
<tr>
<td>$\text{Cr}^{3+}(aq) + 3e^- \rightarrow \text{Cr}(s)$</td>
<td>−0.74</td>
</tr>
<tr>
<td>$\text{Zn}^{2+}(aq) + 2e^- \rightarrow \text{Zn}(s)$</td>
<td>−0.76</td>
</tr>
<tr>
<td>$2\text{H}_2\text{O} + 2e^- \rightarrow \text{H}_2(g) + 2\text{OH}^-(aq)$</td>
<td>−0.83</td>
</tr>
<tr>
<td>$\text{Cr}^{2+}(aq) + 2e^- \rightarrow \text{Cr}(s)$</td>
<td>−0.89</td>
</tr>
<tr>
<td>$\text{Al}^{3+}(aq) + 3e^- \rightarrow \text{Al}(s)$</td>
<td>−1.68</td>
</tr>
<tr>
<td>$\text{Mg}^{2+}(aq) + 2e^- \rightarrow \text{Mg}(s)$</td>
<td>−2.36</td>
</tr>
<tr>
<td>$\text{Na}^+(aq) + e^- \rightarrow \text{Na}(s)$</td>
<td>−2.71</td>
</tr>
<tr>
<td>$\text{Ca}^{2+}(aq) + 2e^- \rightarrow \text{Ca}(s)$</td>
<td>−2.87</td>
</tr>
<tr>
<td>$\text{Li}^+(aq) + e^- \rightarrow \text{Li}(s)$</td>
<td>−3.04</td>
</tr>
</tbody>
</table>
Useful formulas

Quantum Chemistry

- **E** = \(h \nu = hc/\lambda \)
- \(\lambda = h/mv \)
- 4.5\(k_B T = hc/\lambda \)
- \(E = Z^2 E_R (1/n^2) \)
- \(\Delta x \cdot \Delta (mv) \geq h/4\pi \)
- \(q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4 \)

Electrochemistry

- **\(\Delta G^\circ = -nFE^\circ \)**
- **Moles of e\(^-\) = It/F**
- \(E = E^\circ - (RT/nF) \times 2.303 \log Q \)
- \(E^\circ = (RT/nF) \times \ln K \)
- \(E = E^\circ - \frac{0.0592}{n} \log Q \) (at 25 °C)

Acids and Bases

- **pK\(_w\) = pH + pOH = 14.00**
- **pK\(_w\) = pK\(_a\) + pK\(_b\) = 14.00**
- **pH = pK\(_a\) + \log ([A\(^-\)] / [HA])**

Gas Laws

- **PV = nRT**
- \((P + n^2a/V^2)(V - nb) = nRT\)**

Colligative properties

- **\(\pi = cRT \)**
- **\(P_{solution} = X_{solvent} \times P^o_{solvent} \)**
- **p = kc**
- **\(\Delta T_f = K_f m \)**
- **\(\Delta T_b = K_b m \)**

Kinetics

- **t\(_{1/2}\) = ln2/k**
- **k = Ae^(E_a/RT)**
- **ln[A] = ln[A]\(_o\) - kt**
- **ln\(\frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \)**

Radioactivity

- **t\(_{1/2}\) = ln2/\(\lambda \)**
- **A = \(\lambda N \)**
- **ln(\(N_0/N_t \)) = \(\lambda t \)**
- **14\(^C\) age = 8033 ln(\(A_0/A_t \))**

Polymers

- **\(R_g = \sqrt{\frac{nt_i^2}{6}} \)**

Mathematics

- If \(ax^2 + bx + c = 0 \), then \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)
- **ln x = 2.303 log x**
PERIODIC TABLE OF THE ELEMENTS

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>Cr</td>
<td>Mn</td>
</tr>
<tr>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>Cr</td>
</tr>
<tr>
<td>H</td>
<td>He</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
</tr>
</tbody>
</table>

November 2006

CHEM1612

22/32(b)

LANTHANIDES

| **La** | **Ce** | **Pr** | **Nd** | **Pm** | **Sm** | **Eu** | **Gd** | ** Tb** | **Dy** | **Ho** | **Er** | ** Tm** | **Yb** | **Lu** |
|138.91 | 140.12 | 140.91 | 144.24 | [144.9] | 150.4 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 173.04 | 174.97 |

ACTINIDES

| **Ac** | **Th** | **Pa** | **U** | **Np** | **Pu** | **Am** | **Cm** | **Bk** | ** Cf** | **Es** | **Fm** | **Md** | **No** | **Lr** |
| 227.0 | 232.04 | [231.0] | 238.03 | [237.0] | [239.1] | [243.1] | [247.1] | [252.1] | [257.1] | [259.1] | [260.1] | | | |