Topics in the November 2006 Exam Paper for CHEM1612

Click on the links for resources on each topic.

2006-N-2:

• Introduction to Chemical Energetics

2006-N-3:

- Introduction to Chemical Energetics
- Acids and Bases

2006-N-4:

Acids and Bases

2006-N-5:

• Introduction to Chemical Energetics

2006-N-6:

- Introduction to Chemical Energetics
- Chemical Equilibrium

2006-N-7:

• Chemical Equilibrium

2006-N-8:

Solutions

2006-N-9:

- Solubility
- Complexes

2006-N-10:

- Solubility
- Complexes
- Redox Reactions and Introduction to Electrochemistry

2006-N-11:

• Redox Reactions and Introduction to Electrochemistry

2006-N-12:

- Radiochemistry
- Introduction to Colloids and Surface Chemistry
- Redox Reactions and Introduction to Electrochemistry

2006-N-13:

Chemical Kinetics

22/32(a)

The University of Sydney

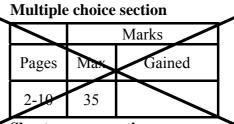
CHEM1612 - CHEMISTRY 1B (PHARMACY)

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2006

TIME ALLOWED: THREE HOURS


GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 17 and 24 are for rough working only.

OFFICIAL USE ONLY

Short answer section

		Marks		
Page	Max	Gaine	d	Marker
11	6			
12	5			
13	5			
14	3			
15	4			
16	6			
18	6			
19	6			
20	5			
21	7			
22	7			
23	5			
Total	65			

	of urea, $(NH_2)_2CO$, is:	
$\operatorname{CO}_2(g) + 2\operatorname{NH}_3(g) \rightarrow \operatorname{H}_2\operatorname{O}(g) + (\operatorname{NH}_2)$	$\Delta H^{\circ} = -90.1 \text{ kJ m}$	nol ⁻¹
Using the following data, calculate the st	andard enthalpy of formation of solid	urea.
$4NH_3(g) + 3O_2(g) \rightarrow 6H_2O(g) +$		-1
$C(s) + O_2(g) \rightarrow CO_2(g)$	$\Delta H^{\circ} = -393.5 \text{ kJ mol}^{-1}$	
$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$	$\Delta H^{\circ} = -483.6 \text{ kJ mol}^{-1}$	
	Г	
	Answer:	
	ccess is only spontaneous below 821 °	°C.
	ccess is only spontaneous below 821 °	°C.
	ccess is only spontaneous below 821 °	°C.
The formation of urea in the industrial pr What is the value of the entropy change 2	ccess is only spontaneous below 821 °	°C.
	ccess is only spontaneous below 821 °	°C.
	ccess is only spontaneous below 821 °	°C.
	ccess is only spontaneous below 821 °	°C.
	ccess is only spontaneous below 821 °	°C.
	ccess is only spontaneous below 821 °	°C.
	Answer:	°C.

•	The specific heat capacity of water is $4.18 \text{ J g}^{-1} \text{ K}^{-1}$ and the specific heat capacity of copper is 0.39 J g ⁻¹ K ⁻¹ . If the same amount of energy were applied to a 1.0 mol sample of each substance, both initially at 25 °C, which substance would get hotter? Show all working.	Marks 2
	Answer:	_
•	Explain why the acidity of hydrogen halides <i>increases</i> with increasing halogen size (<i>i.e.</i> , K_a (HCl) < K_a (HBr) < K_a (HI)), while the acidity of hypohalous acids <i>decreases</i> with increasing halogen size (<i>i.e.</i> , K_a (HOCl) > K_a (HOBr) > K_a (HOI)).	3

CHEM1612	2006-N-4	November 2006	22/32(a)
	acid is 6.3×10^{-5} M at 23		Marks 5
Calculate the pH of	of a 0.0100 M aqueous so	lution of sodium benzoate (C ₆ H ₅ COONa)).
	F		
		Answer:	
	to 225 mL of 0.0200 M at	5 mL of this 0.0100 M aqueous solution of the pH of the	
		Answer:	
		Answer:	

"Water gas" is a mixture of combustible gases produced from steam and coal according to the following reaction:	Mar 3
$C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$ $\Delta H^\circ = 131 \text{ kJ mol}^{-1}$	
The equation for the complete combustion of 1 mol of water gas (<i>i.e.</i> 0.5 mol CO(g) and 0.5 mol H ₂ (g)) can be written as:	
$\frac{1}{2}CO(g) + \frac{1}{2}H_2(g) + \frac{1}{2}O_2(g) \rightarrow \frac{1}{2}CO_2(g) + \frac{1}{2}H_2O(g)$	
Calculate the standard enthalpy of combustion of water gas, given the following thermochemical data.	
$\Delta H^{\circ}_{vap} (H_2O) = 44 \text{ kJ mol}^{-1}$ $\Delta H^{\circ}_{f} (H_2O(1)) = -286 \text{ kJ mol}^{-1}$ $\Delta H^{\circ}_{f} (CO_2(g)) = -393 \text{ kJ mol}^{-1}$	

THIS QUESTION CONTINUES ON THE NEXT PAGE. THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

The CO(g) in water gas can be reagas shift" reaction:	acted further with $H_2O(g)$ in the so-called "water-	Mark 4
$CO(g) + H_2$	$_{2}O(g) \iff CO_{2}(g) + H_{2}(g)$	
900 K contains a 1:1 mole ratio of This sample is placed in a sealed of	ion. A sample of water gas flowing over coal at f CO(g) and H ₂ (g), as well as 0.250 mol L^{-1} H ₂ O(g). container at 900 K and allowed to come to tains 0.070 mol L^{-1} CO ₂ (g). What was the initial in the sample?	
	$[CO] = [H_2] =$	
If the walls of the container are ch	nilled to below 100 °C, what will be the effect on the	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

•	The isomerisation of glucose-6-phosphate key step in the metabolism of glucose for	e (G6P) to fructose-6-phosphate (F6P) is a energy. At 298 K,	Marks 6
	G6P <table-cell-rows> F6P</table-cell-rows>	$\Delta G^{\circ} = 1.67 \text{ kJ mol}^{-1}$	
	Calculate the equilibrium constant for this	s process at 298 K.	
		Answer:	
	What is the free energy change (in kJ mol and 2.00 mol of G6P reaching equilibrium	^{1–1}) involved in a mixture of 3.00 mol of F6P n at 298 K?	
		Answer:	
	Sketch a graph of G_{sys} versus "extent of revaries as G6P is converted to F6P. Indicate to 3.00 mol of F6P and 2.00 mol of G6P.	te the position on this curve corresponding	

•	Assume that NaCl is the only significant s seawater at 25 °C and 1 atm has a mass of At what temperature would this seawater constant of water is 1.86 °C kg mol ⁻¹ .	E 1.0275 kg and contains 33.0 g of NaCl.	Marks 6
		Answer:	
	The vapour pressure above pure H_2O is 22 the vapour pressure above this seawater u	3.76 mmHg at 25 °C and 1 atm. Calculate nder the same conditions.	
		Answer:	
	The desalination of seawater by reverse of alleviating water shortages in Sydney. W applied to this seawater in order to force i yielding pure H_2O ?	hat pressure (in Pa) would need to be	
		Answer:	

CHEM1612	2006-N-9	November 2006	22/32(a)
• The molar solubility Calculate the value	y of lead(II) fluoride, $\int K_{sp}$ for this compo	PbF ₂ , is found to be 2.6×10^{-3} M at 25 °C and at this temperature.	Marks 2
		$K_{\rm sp} =$	
 Draw all stereoison (en = ethylenediam 	ners of the complex io ine = $NH_2CH_2CH_2NH$	n of $[Co(en)_3]Br_3$. $I_2)$	2
• Name the followin	g complexes.		2
[Co(H ₂ O) ₄ Br ₂]Cl			

• Write the chemical equation for the form	action of the complex ion $[Cd(NH_3)_4]^{2+}$.	Marks 2
Write the associated stability constant ex	pression (K_{stab}).	_
 The physiological properties of chromiun half reaction in which Cr(VI) is reduced 	m depend on its oxidation state. Consider the to Cr(III).	3
$CrO_4^{2-}(aq) + 4H_2O(l) + 3e^- \rightarrow Crochetarrow CrO_4^{2-}(aq)$	$(OH)_3(s) + 5OH^-(aq) \qquad E^o = -0.13 V$	
Calculate the potential for this half reacting $[CrO_4^{2-}(aq)] = 1.0 \times 10^{-6} \text{ M}.$	ion at 25 °C, where $pH = 7.40$ and	
	Answer:	-

Consider the following reaction at 298 K	, ,	Mar 5
$Ni^{2+}(aq) + Zn(s) =$	\checkmark Ni(s) + Zn ²⁺ (aq)	5
Calculate ΔG° for the cell. (Relevant electropage.)	ctrode potentials can be found on the data	
		_
	Answer:	
What is the value of the equilibrium cons	stant for the reaction at 298 K?	
	Answer:	
Express the overall reaction in voltaic ce	Il notation.	
Using a current of 2.00 A, how long (in r silver from 0.250 L of a 1.14×10^{-2} M A	minutes) will it take to plate out all of the $g^+(aq)$ solution?	2

CHEM1612

• If a medical procedure calls for 2.0 mg of 48 V, what mass of isotope would be	Marks 2					
required to be able to use it exactly one week later? The half life of ⁴⁸ V is 1.61 days.	_					
	_					
Answer:	3					
• Describe how hydrophilic and hydrophobic colloids are stabilised in water.						
	2					
• Calculate the standard free-energy change for the following reaction at 298 K.						
$2Au(s) + 3Mg^{2+}(1.0 \text{ M}) \rightarrow 2Au^{3+}(1.0 \text{ M}) + 3Mg(s)$	-					
·						
Answer:						

5

Marks • The major pollutants NO(g), CO(g), $NO_2(g)$ and $CO_2(g)$, which are emitted by cars, can react according to the following equation. $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$ The following rate data were collected at 225 °C. Initial rate (d[NO₂]/dt, M s⁻¹) Experiment $[NO_2]_0(M)$ $[CO]_0(M)$ 1.44×10^{-5} 1 0.263 0.826 1.44×10^{-5} 2 0.413 0.263 5.76×10^{-5} 3 0.526 0.413 Determine the rate law for the reaction. Calculate the value of the rate constant at 225 °C. Answer: Calculate the rate of appearance of CO_2 when $[NO_2] = [CO] = 0.500$ M. Answer: Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.

CHEM1612 - CHEMISTRY 1B (PHARMACY)

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Deci	mal fract	ions	Deci	Decimal multiples						
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol					
10^{-3}	milli	m	10^{3}	kilo	k					
10 ⁻⁶	micro	μ	10^{6}	mega	М					
10^{-9}	nano	n	10 ⁹	giga	G					
10^{-12}	pico	р								

CHEM1612 - CHEMISTRY 1B (PHARMACY)

Standard Reduction Potentials, E°

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2^+}(\operatorname{aq}) + 2e^- \rightarrow \operatorname{Sn}(s)$	-0.14
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s)	
	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.14 -0.24
Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s) Co ²⁺ (aq) + 2e ⁻ \rightarrow Co(s)	-0.14 -0.24 -0.28
Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s) Co ²⁺ (aq) + 2e ⁻ \rightarrow Co(s) Fe ²⁺ (aq) + 2e ⁻ \rightarrow Fe(s)	-0.14 -0.24 -0.28 -0.44
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.14 -0.24 -0.28 -0.44 -0.74
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.14 -0.24 -0.28 -0.44 -0.74 -0.76
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$	-0.14 -0.24 -0.28 -0.44 -0.74 -0.76 -0.83
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.14 -0.24 -0.28 -0.44 -0.74 -0.76 -0.83 -0.89
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-0.14 -0.24 -0.28 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-0.14 -0.24 -0.28 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.36
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$	$\begin{array}{r} -0.14 \\ -0.24 \\ -0.28 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.36 \\ -2.71 \end{array}$

CHEM1612 - CHEMISTRY 1B (PHARMACY)

	ejui jormulus					
Quantum Chemistry	Electrochemistry					
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$					
$\lambda = h/mv$	Moles of $e^- = It/F$					
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$					
$E = Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$					
$\Delta x \cdot \Delta (mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$					
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$					
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$					
Acids and Bases	Gas Laws					
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT					
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$					
$pH = pK_a + \log\{[A^-] / [HA]\}$						
Colligative properties	Kinetics					
$\pi = cRT$	$t_{1/2} = \ln 2/k$					
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-E_a/RT}$					
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$					
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k} = \frac{E_{a}}{R} \left(\frac{1}{T_{a}} - \frac{1}{T_{a}} \right)$					
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 = R T_1 T_2$					
Radioactivity	Thermodynamics & Equilibrium					
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$					
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$					
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$					
14 C age = 8033 ln(A_0/A_t)	$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$					
Polymers	Mathematics					
$R_{\rm g} = \sqrt{\frac{nl_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$					
	$\ln x = 2.303 \log x$					

Useful formulas

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen H 1.008		_															2 нелим Не 4.003
3	4 BERYLLIUM											5 boron	6 carbon	7 NITROGEN	8 oxygen	9 FLUORINE	10 NEON
LITHIUM	BERYLLIUM											BORON	CARBON	NIROGEN	OXYGEN	FLUORINE	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
sodium Na	MAGNESIUM Mg											ALUMINIUM	SILICON Si	PHOSPHORUS P	SULFUR S	CHLORINE Cl	ARGON Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM K	CALCIUM CA	scandium Sc	TITANIUM Ti	VANADIUM V	CHROMIUM Cr	MANGANESE Mn	IRON Fe	COBALT CO	NICKEL Ni	COPPER Cu	ZINC	GALLIUM Ga	GERMANIUM Ge	ARSENIC AS	selenium Se	BROMINE Br	KRYPTON Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM Rb	STRONTIUM	YTTRIUM Y	zirconium Zr	NIOBIUM Nb	MOLYBDENUM Mo	TECHNETIUM TC	RUTHENIUM Ru	RHODIUM Rh	PALLADIUM Pd	SILVER Ag	CADMIUM Cd	INDIUM INDIUM	Sn	ANTIMONY Sb	TELLURIUM TELLURIUM	IODINE	xenon Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69		127.60	126.90	131.30
55 caesium	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM CS	barium Ba		hafnium Hf	TANTALUM Ta	TUNGSTEN W	RHENIUM Re	OSMIUM OS	iridium Ir	PLATINUM Pt	GOLD Au	MERCURY	THALLIUM	LEAD Pb	BISMUTH Bi	POLONIUM POL	ASTATINE At	radon Rn
132.91	Da 137.34		178.49		183.85	186.2	190.2	192.22	195.09	Au 196.97	Hg 200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103		105	106	107	108	109									
FRANCIUM Fr	RADIUM		RUTHERFORDI	UM DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM									
[223.0]	Ra [226.0]		KI [261]	Db [262]	Sg [266]	Bh [262]	Hs [265]	Mt [266]									
[]	[==0.0]		[=01]	[==]	[200]	[===]	[=00]	[=00]									
	5	7	58	59	60	61	62	63	64	65	5	66	67	68	69	70	71
LANTHANI	DES LANTH	ANUM C	ERIUM P	RASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIU?	M TERBI	UM DYS	PROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM
	L 138		Ce 0.12	Pr 140.91	Nd 144.24	Pm [144.9]	Sm 150.4	Eu 151.96	Gd 157.25	5 158.		Dy 52.50	Ho 64.93	Er 167.26	Tm 168.93	Yb 173.04	Lu 174.97
	8		90	91	92	93	94	95	96	97		98	99	100	100.95	102	103
ACTINID	ES ACTIN	TH TH	ORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKEL	LIUM CAL	FORNIUM	NSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
	A		Гh 2.04	Pa [231.0]	U 238.03	Np	Pu [239.1]	Am [243.1]	Cm [247.1]	Bl] [247		Cf 52.1] [Es 252.1]	Fm [257.1]	Md [256.1]	No [259.1]	Lr [260.1]
	[22]	[.0] [23	2.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1] [24/	.1] [2	JZ.1]	232.1]	[237.1]	[230.1]	[239.1]	[200.1]

PERIODIC TABLE OF THE ELEMENTS

November 2006

CHEM1612

22/32(b)