Topics in the November 2007 Exam Paper for CHEM1612

Click on the links for resources on each topic.

2007-N-2:

• Introduction to Chemical Energetics

2007-N-3:

• Chemical Equilibrium

2007-N-4:

• Chemical Equilibrium

2007-N-5:

Solutions

2007-N-6:

- Introduction to Chemical Energetics
- Gas Laws
- Chemical Equilibrium

2007-N-7:

• Chemical Equilibrium

2007-N-8:

- Solubility
- Complexes

2007-N-9:

• Radiochemistry

2007-N-10:

- Redox Reactions and Introduction to Electrochemistry
- Acids and Bases

2007-N-11:

- Solubility
- Redox Reactions and Introduction to Electrochemistry

2007-N-12:

- Complexes
- Introduction to Colloids and Surface Chemistry

2007-N-13:

Chemical Kinetics

22/32(a)

The University of Sydney

CHEM1612 - CHEMISTRY 1B (PHARMACY)

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2007

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 17 and 24 are for rough working only.

OFFICIAL USE ONLY

		•	Multiple
\square	\triangleleft		\backslash
ined	d	jes Max	Pages
$\overline{}$		9 33	2-10
	ine	ges Max A 33	Pages

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
11	4			
12	5			
13	6			
14	6			
15	5			
16	6			
18	7			
19	7			
20	5			
21	6			
22	5			
23	5			
Total	67			

Marks • Anhydrous copper(II) sulfate is a white powder that reacts with water to give blue 2 crystals of copper(II) sulfate-5-water. $CuSO_4(s) + 5H_2O(1) \rightarrow CuSO_4 \cdot 5H_2O(s)$ Calculate the standard enthalpy change for this reaction from the heats of solution. $\Delta H^{\circ}_{solution} / \text{kJ mol}^{-1}$ Compound $CuSO_4(s)$ -66.5 +11.7 $CuSO_4 \cdot 5H_2O(s)$ Answer: • Using the given data, calculate ΔH° for the reaction: $H(g) + Br(g) \rightarrow HBr(g)$ 2 $\Delta H^\circ = +436 \text{ kJ mol}^{-1}$ Data: $H_2(g) \rightarrow 2H(g)$ $\Delta H^\circ = +193 \text{ kJ mol}^{-1}$ $Br_2(g) \rightarrow 2Br(g)$ $\Delta H^\circ = -72 \text{ kJ mol}^{-1}$ $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$ $\Delta H^{\circ} =$

•	Consider the reaction $2SO_2(g) +$	$O_2(g) \iff 2SO_3(g)$	Marks 5
	$\Delta H^\circ = -198.4 \text{ kJ mol}^{-1} \text{ and } \Delta S^\circ = -187.9$		C
	Show that this reaction is spontaneous at		
			-
	If the volume of the reaction system is increaction move?	creased at 25 °C, in which direction will the	
	Calculate the value of the equilibrium cor	nstant, <i>K</i> , at 25 °C.	
			-
		r	-
		<i>K</i> =	
	Assuming ΔH° and ΔS° are independent of is the reaction non-spontaneous?	of temperature, in which temperature range	
			-
		1	-
		Answer:	

The first step in the metabolism of gluco	se in biological systems is the addition of a
phosphate group in a dehydration-conde	nsation reaction:
$glucose(aq) + H_2PO_4^-(aq)$	$[glucose phosphate]^{-}(aq) + H_2O(l)$
The free energy change associated with treaction is driven forwards by harnessing hydrolysis of adenosine triphosphate, AT	this reaction is $\Delta G^{\circ} = 13.8 \text{ kJ mol}^{-1}$. The g the free energy associated with the ΓP^{4-} , to adenosine diphosphate, ADP^{3-} :
$ATP^{4-}(aq) + H_2O(l) \implies ADP^{3-}(aq)$	q) + H ₂ PO ₄ ^{-(aq)} $\Delta G^{\circ} = -30.5 \text{ kJ mol}^{-1}$
The overall reaction is thus:	
glucose(aq) + $ATP^{4-}(aq)$ Calculate the equilibrium constant assoc temperature (37 °C).	$[glucose phosphate]^{-}(aq) + ADP^{3-}(aq)$ iated with this overall reaction at body
	Answer:
This overall equilibrium reaction is invested	Answer: stigated by adding 0.0100 mol of ATP ⁴⁻ to a
	stigated by adding 0.0100 mol of ATP ⁴⁻ to a aqueous solution of glucose at 37 °C. What
flask containing 175 mL of a 0.0500 M a percentage of the ATP ⁴⁻ will have been of	stigated by adding 0.0100 mol of ATP ⁴⁻ to a aqueous solution of glucose at 37 °C. What
flask containing 175 mL of a 0.0500 M a percentage of the ATP ⁴⁻ will have been of	stigated by adding 0.0100 mol of ATP ⁴⁻ to a aqueous solution of glucose at 37 °C. What
flask containing 175 mL of a 0.0500 M a percentage of the ATP ⁴⁻ will have been of	stigated by adding 0.0100 mol of ATP ⁴⁻ to a aqueous solution of glucose at 37 °C. What
flask containing 175 mL of a 0.0500 M a percentage of the ATP ⁴⁻ will have been of	stigated by adding 0.0100 mol of ATP ⁴⁻ to a aqueous solution of glucose at 37 °C. What
flask containing 175 mL of a 0.0500 M a percentage of the ATP ⁴⁻ will have been of	stigated by adding 0.0100 mol of ATP ⁴⁻ to a aqueous solution of glucose at 37 °C. What
flask containing 175 mL of a 0.0500 M a percentage of the ATP ⁴⁻ will have been of	stigated by adding 0.0100 mol of ATP ⁴⁻ to a aqueous solution of glucose at 37 °C. What
flask containing 175 mL of a 0.0500 M a percentage of the ATP ⁴⁻ will have been of	stigated by adding 0.0100 mol of ATP ⁴⁻ to a aqueous solution of glucose at 37 °C. What
flask containing 175 mL of a 0.0500 M a percentage of the ATP ⁴⁻ will have been of	stigated by adding 0.0100 mol of ATP ⁴⁻ to a aqueous solution of glucose at 37 °C. What
flask containing 175 mL of a 0.0500 M a percentage of the ATP ⁴⁻ will have been of	stigated by adding 0.0100 mol of ATP ⁴⁻ to a aqueous solution of glucose at 37 °C. What
flask containing 175 mL of a 0.0500 M a percentage of the ATP ⁴⁻ will have been of	stigated by adding 0.0100 mol of ATP ⁴⁻ to a aqueous solution of glucose at 37 °C. What
flask containing 175 mL of a 0.0500 M a percentage of the ATP ⁴⁻ will have been of	stigated by adding 0.0100 mol of ATP ⁴⁻ to a aqueous solution of glucose at 37 °C. What

at 25 °C. What is the molar mass of lys	own bacterial cell walls. A solution containing olution has an osmotic pressure of 0.00125 atm sozyme?	Mar 3
	Answer:	
point of 1.00 L of water to -10.0 °C?	H_2CH_2OH , is required to lower the freezing The freezing point depression constant of water	3
is 1.86 °C kg mol ^{-1} . Assume the den	sity of water is 1.00 g mL ^{-1} at 0 °C.	
is 1.86 °C kg mol ⁻¹ . Assume the den	sity of water is 1.00 g mL^{-1} at 0 °C .	-
is 1.86 °C kg mol ⁻¹ . Assume the den	sity of water is 1.00 g mL ⁻¹ at 0 °C.	_
is 1.86 °C kg mol ⁻¹ . Assume the den	sity of water is 1.00 g mL ⁻¹ at 0 °C.	_
is 1.86 °C kg mol ⁻¹ . Assume the den	sity of water is 1.00 g mL ⁻¹ at 0 °C.	
is 1.86 °C kg mol ⁻¹ . Assume the den	sity of water is 1.00 g mL ⁻¹ at 0 °C.	
is 1.86 °C kg mol ⁻¹ . Assume the dem	sity of water is 1.00 g mL ⁻¹ at 0 °C.	
is 1.86 °C kg mol ⁻¹ . Assume the dem	sity of water is 1.00 g mL ⁻¹ at 0 °C.	
is 1.86 °C kg mol ⁻¹ . Assume the dem	sity of water is 1.00 g mL ⁻¹ at 0 °C.	
is 1.86 °C kg mol ⁻¹ . Assume the den	sity of water is 1.00 g mL ⁻¹ at 0 °C.	

	т
• Acetylene, C ₂ H ₂ , is an important fuel in welding. It is produced in the laboratory when calcium carbide, CaC ₂ , reacts with water:	Marks 3
$CaC_2(s) + 2H_2O(l) \rightarrow C_2H_2(g) + Ca(OH)_2(s)$	
For a sample of C_2H_2 collected over water, the total gas pressure was 748 mmHg and the volume was 543 mL. At the gas temperature (23 °C), the vapour pressure of water is 21 mmHg. What mass of acetylene was collected?	
Answer:	-
The solubility of acetylene in water at 22.0 °C is small. If the temperature were raised, would you expect this solubility to increase or decrease?	
• Why is helium instead of nitrogen mixed with oxygen in deep sea diving? Explain the origin of any differences in relevant properties.	
L	1

• The isomerisation of glucose-6-phosphate (G6P) to fructose-6-phosphate (F6P) is a key step in the metabolism of glucose for energy.	Marks 6
G6P ⇐► F6P	
At 298 K, the equilibrium constant for the isomerisation is 0.510. Calculate the value of ΔG° at 298 K.	
Answer:	
Calculate ΔG at 298 K when the [F6P] / [G6P] ratio = 10.	
Answer:	
In which direction will the reaction shift in order to establish equilibrium? Why?	
In which direction will the reaction shift in order to establish equilibrium? Why?	
Sketch a graph of G_{sys} versus "extent of reaction", with a curve showing how G_{sys} varies as G6P is converted to F6P. Indicate the position on this curve corresponding to the point where the [F6P] / [G6P] ratio = 10. Indicate on the graph that section of the curve where $Q > K$.	

•	What is the molar solubility of Cu(Ol	H) ₂ at 25 °C given its $K_{sp} = 4.5 \times 10^{-21} \text{ M}^3$?	Marks
			2
		Answer:	_
•	Draw all possible stereoisomers of th or <i>trans</i> . en = ethylenediamine =	e complex ion $[CoCl_2(en)_2]^+$. Label each as <i>cis</i> = NH ₂ CH ₂ CH ₂ NH ₂	3
•	Name the following complexes.		2
	Na ₃ [AlF ₆]		
	[CoBr(NH ₃) ₅]SO ₄		

	f neutrons or protons. Theoretically, ¹⁸⁸ / ₇₅ Re with either particle followed by radioactive he relevant equations to describe both	Marks 7
proton bombardment		-
In practice, only the sequence using neutr reason why proton bombardment is not us	ron bombardment is used. Give one possible sed.	-
		_
Rhenium-188 is used for the relief of cano of 16.7 hours. What mass of ¹⁸⁸ / ₇₅ Re needs later of a solution with a specific activity	to be produced to allow shipment 24 hours	_
	Answer:	

		Answer:	
i		f 1.22. Given that the pK_a of iodic acid, HIO ₃ , ate, NaIO ₃ , would need to be added to this	
i	s 0.79, how many moles of sodium ioda		
i	s 0.79, how many moles of sodium ioda		_
i	s 0.79, how many moles of sodium ioda		_
i	s 0.79, how many moles of sodium ioda		_
i	s 0.79, how many moles of sodium ioda		_
i	s 0.79, how many moles of sodium ioda		
i	s 0.79, how many moles of sodium ioda		
i	s 0.79, how many moles of sodium ioda		
i	s 0.79, how many moles of sodium ioda		

The solubility product constant of AgCl is electrode potentials found on the data pag of a half-cell formed by: (a) an Ag electrode immersed in a saturate	s $K_{sp} = 1.8 \times 10^{-10} \text{ M}^2$. Using the relevant ge, calculate the reduction potential at 298 K ed solution of AgCl.	Marks 6
	Answer:	-
(b) an Ag electrode immersed in a 0.5 M s precipitate.	solution of KCl containing some AgCl	-
	Answer:	
Each of these half-cells is connected to a swhich half-cell, (a) or (b), will clear evide Describe the change(s) observed.		

- Zinc sulfate (0.50 g) is dissolved in 1.0 L of a 1.0 M solution of KCN. Write the chemical equation for the formation of the complex ion $[Zn(CN)_4]^{2^-}$. Calculate the concentration of $Zn^{2^+}(aq)$ in solution at equilibrium. Ignore any change in volume upon addition of the salt. K_{stab} of $[Zn(CN)_4]^{2^-} = 4.2 \times 10^{19} \text{ M}^{-4}$.
- Describe how the addition of an electrolyte can alter the state of a colloidal dispersion.

2

Marks • Nitric oxide, a noxious pollutant, and hydrogen react to give nitrous oxide and water 5 according to the following equation. $2NO(g) + H_2(g) \rightarrow N_2O(g) + H_2O(g)$ The following rate data were collected at 225 °C. Initial rate (d[NO]/dt, $M s^{-1}$) Experiment $[NO]_0(M)$ $[H_2]_0(M)$ 6.4×10^{-3} 2.2×10^{-3} 2.6×10^{-5} 1 1.3×10^{-2} 2.2×10^{-3} 1.0×10^{-4} 2 6.4×10^{-3} 4.4×10^{-3} 5.1×10^{-5} 3 Determine the rate law for the reaction. Calculate the value of the rate constant at 225 °C. Answer: Calculate the rate of appearance of N₂O when $[NO] = [H_2] = 6.6 \times 10^{-3} \text{ M}.$ Answer: Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.

CHEM1612 - CHEMISTRY 1B (PHARMACY)

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Deci	mal fract	ions	Deci	Decimal multiples						
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol					
10^{-3}	milli	m	10^{3}	kilo	k					
10 ⁻⁶	micro	μ	10^{6}	mega	М					
10^{-9}	nano	n	10 ⁹	giga	G					
10^{-12}	pico	р								

CHEM1612 - CHEMISTRY 1B (PHARMACY)

Standard Reduction Totentials, E	
Reaction	E° / V
$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+2.01
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$Au^{3+}(aq) + 3e^- \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^- \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\mathrm{Co}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{s})$	-0.28
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

CHEM1612 - CHEMISTRY 1B (PHARMACY)

Useful formulas								
Quantum Chemistry	Electrochemistry							
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$							
$\lambda = h/mv$	Moles of $e^- = It/F$							
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$							
$E = -Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$							
$\Delta x \cdot \Delta (mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$							
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$							
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$							
Acids and Bases	Gas Laws							
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT							
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P+n^2a/V^2)(V-nb) = nRT$							
$pH = pK_a + \log\{[A^-] / [HA]\}$								
Colligative properties	Kinetics							
$\pi = cRT$	$t_{1/2} = \ln 2/k$							
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-E_a/RT}$							
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$							
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$							
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 \qquad R T_1 \qquad T_2$							
Radioactivity	Thermodynamics & Equilibrium							
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$							
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$							
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$							
14 C age = 8033 ln(A_0/A_t)	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$							
Miscellaneous	Mathematics							
$A = -\log_{10} \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$							
$A = \varepsilon c l$	$\ln x = 2.303 \log x$							
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$								

Useful formulas

1	2	3	4	5	6	7	8	9	10	11	12	2 13	14	15	16	17	18
1 hydrogen																	2 HELIUM
H																	He
1.008		7															4.003
3 LITHIUM	4 BERYLLIUM											5 BORG	N CARBON	7 NITROGEN	8 oxygen	9 FLUORINE	10 NEON
Li	Be											Bok	C	N	O	F	Ne
6.941	9.012											10.8	1 12.01	14.01	16.00	19.00	20.18
11	12											13		15	16	17	18
Na	MAGNESIUM Mg											ALUMIN		PHOSPHORUS P	SULFUR S	CHLORINE Cl	ARGON Ar
22.99	24.31											26.9		3 0.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30) 31	32	33	34	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZING				SELENIUM	BROMINE	KRYPTON
K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Z I 65.3			As 74.92	Se 78.96	Br 79.90	Kr 83.80
37	38	39	40	41	42	43	44	45	46	47	48			51	52	53	54
RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADM	UM INDIU	M TIN	ANTIMONY	TELLURIUM	IODINE	XENON
Rb	Sr	Y	Zr	Nb	Mo		Ru	Rh	Pd	Ag				Sb	Te	I	Xe
85.47 55	87.62 56	88.91 57-71	91.22 72	92.91 73	95.94 74	[98.91] 75	101.07 76	102.91 77	106.4 78	79	107.87 112.40			121.75 83	127.60 84	126.90 85	131.30 86
CAESIUM	BARIUM	57-71	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	/ U OSMIUM	/ / IRIDIUM	PLATINUM			JRY THALL	UM LEAD	O J BISMUTH	POLONIUM	O J ASTATINE	RADON
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	H			Bi	Ро	At	Rn
132.91	137.34	00.102	178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.	59 204.	37 207.2	208.98	[210.0]	[210.0]	[222.0]
87 FRANCIUM	88 radium	89-103	104 RUTHERFORDIU	105 m dubnium	106 seaborgium	107 BOHRIUM	108 hassium	109 meitnerium	110 1111 darmstadtium roentgenium								
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]							
	r		1										1	[<u> </u>
LANTHAND	ES LANTHA	-	58 RIUM PE	59 Aseodymium	60 NEODYMIUM	61 promethium	62 samarium	63 Europium	64 gadolini	UM TERBI		66 dysprosium	67 HOLMIUM	68 Erbium	69 THULIUM	70 ytterbium	71 LUTETIUM
LANTHANID			Ce	Pr	Nd	Pm	Sm	Eu	Gd			Dy	Но	Er	Tm	Yb	Lu
	138.		0.12	140.91	144.24	[144.9]	150.4	151.96	157.2			162.50	164.93	167.26	168.93	173.04	174.97
	89		90	91	92	93	94	95	96	97		98	99	100	101	102	103
ACTINIDES	ACTINI		DRIUM PI	ROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKEL		CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM

Cm

[247.1]

Bk

[247.1]

Cf

[252.1]

Es

[252.1]

Ac

[227.0]

Th

232.04

Pa

[231.0]

U

238.03

Np

[237.0]

Pu

[239.1]

Am

[243.1]

PERIODIC TABLE OF THE ELEMENTS

Fm

[257.1]

Md

[256.1]

No

[259.1]

Lr

[260.1]