Topics in the November 2007 Exam Paper for CHEM1612

Click on the links for resources on each topic.

2007-N-2:

- Introduction to Chemical Energetics

2007-N-3:

- Chemical Equilibrium

2007-N-4:

- Chemical Equilibrium

2007-N-5:

- Solutions

2007-N-6:

- Introduction to Chemical Energetics
- Gas Laws
- Chemical Equilibrium

2007-N-7:

- Chemical Equilibrium

2007-N-8:

- Solubility
- Complexes

2007-N-9:

- Radiochemistry

2007-N-10:

- Redox Reactions and Introduction to Electrochemistry
- Acids and Bases

2007-N-11:

- Solubility
- Redox Reactions and Introduction to Electrochemistry

2007-N-12:

- Complexes
- Introduction to Colloids and Surface Chemistry

2007-N-13:

- Chemical Kinetics

CHEM1612 - CHEMISTRY 1B (PHARMACY)
 SECOND SEMESTER EXAMINATION

CONFIDENTIAL
NOVEMBER 2007
TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME		SID	
OTHER		TUMBER	
NAMES		TABLE	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 17 and 24 are for rough working only.

OFFICIAL USE ONLY

Page	Marks			Marker
	Max	Gained		
11	4			
12	5			
13	6			
14	6			
15	5			
16	6			
18	7			
19	7			
20	5			
21	6			
22	5			
23	5			
Total	67			

- Anhydrous copper(II) sulfate is a white powder that reacts with water to give blue crystals of copper(II) sulfate-5-water.

$$
\mathrm{CuSO}_{4}(\mathrm{~s})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})
$$

Calculate the standard enthalpy change for this reaction from the heats of solution.

Compound	$\Delta H^{\circ}{ }_{\text {solution }} / \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{CuSO}_{4}(\mathrm{~s})$	-66.5
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$	+11.7

	Answer:

- Using the given data, calculate ΔH° for the reaction: $\mathrm{H}(\mathrm{g})+\operatorname{Br}(\mathrm{g}) \rightarrow \mathrm{HBr}(\mathrm{g})$
$\Delta H^{\circ}=+436 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Br}(\mathrm{g})$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$
$\Delta H^{\circ}=+193 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta H^{\circ}=-72 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
\Delta H^{\circ}=
$$

- Consider the reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
$\Delta H^{\circ}=-198.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S^{\circ}=-187.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ at $25^{\circ} \mathrm{C}$.
Show that this reaction is spontaneous at $25^{\circ} \mathrm{C}$.
\qquad
If the volume of the reaction system is increased at $25^{\circ} \mathrm{C}$, in which direction will the reaction move?
\square
Calculate the value of the equilibrium constant, K, at $25^{\circ} \mathrm{C}$.

Assuming ΔH° and ΔS° are independent of temperature, in which temperature range is the reaction non-spontaneous?

Answer:

- The first step in the metabolism of glucose in biological systems is the addition of a phosphate group in a dehydration-condensation reaction:

$$
\text { glucose }(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \rightleftharpoons \text { [glucose phosphate] }{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The free energy change associated with this reaction is $\Delta G^{\circ}=13.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The reaction is driven forwards by harnessing the free energy associated with the hydrolysis of adenosine triphosphate, ATP 4, to adenosine diphosphate, ADP $^{3-}$:

$$
\operatorname{ATP}^{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{ADP}^{3-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \quad \Delta G^{\circ}=-30.5 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

The overall reaction is thus:

$$
\text { glucose } \left.(\mathrm{aq})+\operatorname{ATP}^{4}(\mathrm{aq}) \rightleftharpoons \text { [glucose phosphate] }\right]^{-}(\mathrm{aq})+\operatorname{ADP}^{3-}(\mathrm{aq})
$$

Calculate the equilibrium constant associated with this overall reaction at body temperature $\left(37^{\circ} \mathrm{C}\right)$.

Answer:
This overall equilibrium reaction is investigated by adding 0.0100 mol of ATP $^{4-}$ to a flask containing 175 mL of a 0.0500 M aqueous solution of glucose at $37^{\circ} \mathrm{C}$. What percentage of the ATP ${ }^{4}$ will have been consumed when the system reaches equilibrium?

Answer:

Suggest two simple ways of further reducing the remaining percentage of ATP ${ }^{4}$.

- Lysozyme is an enzyme that breaks down bacterial cell walls. A solution containing 0.150 g of this enzyme in 210 mL of solution has an osmotic pressure of 0.00125 atm at $25^{\circ} \mathrm{C}$. What is the molar mass of lysozyme?

Answer:

- What mass of ethylene glycol, $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, is required to lower the freezing point of 1.00 L of water to $-10.0^{\circ} \mathrm{C}$? The freezing point depression constant of water is $1.86{ }^{\circ} \mathrm{C} \mathrm{kg} \mathrm{mol}^{-1}$. Assume the density of water is $1.00 \mathrm{~g} \mathrm{~mL}^{-1}$ at $0^{\circ} \mathrm{C}$.
- Acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$, is an important fuel in welding. It is produced in the laboratory when calcium carbide, CaC_{2}, reacts with water:

$$
\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})
$$

For a sample of $\mathrm{C}_{2} \mathrm{H}_{2}$ collected over water, the total gas pressure was 748 mmHg and the volume was 543 mL . At the gas temperature $\left(23^{\circ} \mathrm{C}\right)$, the vapour pressure of water is 21 mmHg . What mass of acetylene was collected?
\square
The solubility of acetylene in water at $22.0^{\circ} \mathrm{C}$ is small. If the temperature were raised, would you expect this solubility to increase or decrease?

- Why is helium instead of nitrogen mixed with oxygen in deep sea diving? Explain the origin of any differences in relevant properties.
- The isomerisation of glucose-6-phosphate (G6P) to fructose-6-phosphate (F6P) is a key step in the metabolism of glucose for energy.

$$
\mathrm{G} 6 \mathrm{P} \rightleftharpoons \mathrm{~F} 6 \mathrm{P}
$$

At 298 K , the equilibrium constant for the isomerisation is 0.510 . Calculate the value of ΔG° at 298 K .

Answer:
Calculate ΔG at 298 K when the [F6P] / [G6P] ratio $=10$.

In which direction will the reaction shift in order to establish equilibrium? Why?

Sketch a graph of $G_{\text {sys }} v e r s u s$ "extent of reaction", with a curve showing how $G_{\text {sys }}$ varies as G6P is converted to F6P. Indicate the position on this curve corresponding to the point where the $[\mathrm{F} 6 \mathrm{P}] /[\mathrm{G} 6 \mathrm{P}]$ ratio $=10$. Indicate on the graph that section of the curve where $Q>K$.

- What is the molar solubility of $\mathrm{Cu}(\mathrm{OH})_{2}$ at $25^{\circ} \mathrm{C}$ given its $K_{\text {sp }}=4.5 \times 10^{-21} \mathrm{M}^{3}$?
- Draw all possible stereoisomers of the complex ion $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]^{+}$. Label each as cis or trans. en $=$ ethylenediamine $=\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
- Name the following complexes.
- A cyclotron facility can produce beams of neutrons or protons. Theoretically, ${ }_{75}^{188} \mathrm{Re}$ can be produced by irradiation of ${ }_{74}^{186} \mathrm{~W}$ with either particle followed by radioactive decay of the intermediate nuclide. Give the relevant equations to describe both sequences of reactions.
neutron bombardment
proton bombardment

In practice, only the sequence using neutron bombardment is used. Give one possible reason why proton bombardment is not used.
\qquad
Rhenium-188 is used for the relief of cancer-induced bone pain and has a half life of 16.7 hours. What mass of ${ }_{75}^{188} \mathrm{Re}$ needs to be produced to allow shipment 24 hours later of a solution with a specific activity of 500 mCi ?

- How many minutes would be required to electroplate 25.0 g of manganese by passing a constant current of 4.8 A through a solution containing $\mathrm{MnO}_{4}{ }^{-}$?

Answer:

- A 300.0 mL solution of HCl has a pH of 1.22 . Given that the $\mathrm{p} K_{\mathrm{a}}$ of iodic acid, HIO_{3}, is 0.79 , how many moles of sodium iodate, NaIO_{3}, would need to be added to this solution to raise its pH to 2.00 ?

Answer:

- The solubility product constant of AgCl is $K_{\text {sp }}=1.8 \times 10^{-10} \mathrm{M}^{2}$. Using the relevant electrode potentials found on the data page, calculate the reduction potential at 298 K of a half-cell formed by:
(a) an Ag electrode immersed in a saturated solution of AgCl .

Answer:
(b) an Ag electrode immersed in a 0.5 M solution of KCl containing some AgCl precipitate.

Answer:

Each of these half-cells is connected to a standard $\mathrm{Cu}^{2+}(1 \mathrm{M}) / \mathrm{Cu}(\mathrm{s})$ half-cell. In which half-cell, (a) or (b), will clear evidence of a reaction taking place be seen? Describe the change(s) observed.

- Zinc sulfate $(0.50 \mathrm{~g})$ is dissolved in 1.0 L of a 1.0 M solution of KCN . Write the chemical equation for the formation of the complex ion $\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}$.

Calculate the concentration of $\mathrm{Zn}^{2+}(\mathrm{aq})$ in solution at equilibrium. Ignore any change in volume upon addition of the salt. $\quad K_{\text {stab }}$ of $\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}=4.2 \times 10^{19} \mathrm{M}^{-4}$.

Answer:

- Describe how the addition of an electrolyte can alter the state of a colloidal dispersion.
- Nitric oxide, a noxious pollutant, and hydrogen react to give nitrous oxide and water according to the following equation.

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The following rate data were collected at $225{ }^{\circ} \mathrm{C}$.

Experiment	$[\mathrm{NO}]_{0}(\mathrm{M})$	$\left[\mathrm{H}_{2}\right]_{0}(\mathrm{M})$	Initial rate $\left(\mathrm{d}[\mathrm{NO}] / \mathrm{dt}, \mathrm{M} \mathrm{s}^{-1}\right)$
1	6.4×10^{-3}	2.2×10^{-3}	2.6×10^{-5}
2	1.3×10^{-2}	2.2×10^{-3}	1.0×10^{-4}
3	6.4×10^{-3}	4.4×10^{-3}	5.1×10^{-5}

Determine the rate law for the reaction.

Calculate the value of the rate constant at $225^{\circ} \mathrm{C}$.
\square
Answer:
Calculate the rate of appearance of $\mathrm{N}_{2} \mathrm{O}$ when $[\mathrm{NO}]=\left[\mathrm{H}_{2}\right]=6.6 \times 10^{-3} \mathrm{M}$.
\square
Answer:
Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.

CHEM1612 - CHEMISTRY 1B (PHARMACY)
 DATA SHEET

Physical constants

Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{\mathrm{e}}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{\mathrm{p}}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G

Standard Reduction Potentials, E°

Reaction
E° / V
$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-} \quad+2.01$
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq}) \quad+1.82$
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq}) \quad+1.72$
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s}) \quad+1.50$
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq}) \quad+1.36$
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad+1.23$
$\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq}) \quad+1.10$
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O} \quad+0.96$
$\operatorname{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd}(\mathrm{s}) \quad+0.92$
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s}) \quad+0.80$
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq}) \quad+0.77$
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \quad+0.53$
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \quad+0.34$
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq}) \quad+0.15$
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g}) \quad 0$ (by definition)
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s}) \quad-0.04$
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s}) \quad-0.13$
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s}) \quad-0.14$
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s}) \quad-0.24$
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{s}) \quad-0.28$
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s}) \quad-0.44$
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s}) \quad-0.74$
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s}) \quad-0.76$
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \quad-0.83$
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s}) \quad-0.89$
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s}) \quad-1.68$
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s}) \quad-2.36$
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s}) \quad-2.71$
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s}) \quad-2.87$
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s}) \quad-3.04$

CHEM1612 - CHEMISTRY 1B (PHARMACY)

Useful formulas

Quantum Chemistry	Electrochemistry
$E=h \nu=h c / \lambda$	$\Delta G^{\circ}=-n F E^{\circ}$
$\lambda=h / m v$	Moles of $e^{-}=I t / F$
$4.5 k_{\mathrm{B}} T=h c / \lambda$	$E=E^{\circ}-(R T / n F) \times 2.303 \log Q$
$E=-Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right)$	$=E^{\circ}-(R T / n F) \times \ln Q$
$\Delta x \cdot \Delta(m v) \geq h / 4 \pi$	$E^{\circ}=(R T / n F) \times 2.303 \log K$
$q=4 \pi r^{2} \times 5.67 \times 10^{-8} \times T^{4}$	$=(R T / n F) \times \ln K$
	$E=E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right)$
Acids and Bases	Gas Laws
$\mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00$	$P V=n R T$
$\mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00$	$\left(P+n^{2} a / V^{2}\right)(V-n b)=n R T$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\}$	
Colligative properties	Kinetics
$\pi=c R T$	$t_{1 / 2}=\ln 2 / k$
$P_{\text {solution }}=X_{\text {solvent }} \times P^{\circ}{ }_{\text {solvent }}$	$\mathrm{k}=A \mathrm{e}^{-E_{\mathrm{a}} / R T}$
$\mathrm{p}=\mathrm{kc}$	$\ln [\mathrm{A}]=\ln [\mathrm{A}]_{0}-k t$
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m$	$\ln \frac{k_{2}}{T}=\frac{E_{a}}{D}\left(\frac{1}{T}-\frac{1}{T}\right)$
$\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m$	
Radioactivity	Thermodynamics \& Equilibrium
$t_{1 / 2}=\ln 2 / \lambda$	$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
$A=\lambda N$	$\Delta G=\Delta G^{\circ}+R T \ln Q$
$\ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t$	$\Delta G^{\circ}=-R T \ln K$
${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$	$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$
Miscellaneous	Mathematics
$A=-\log _{10} \frac{I}{I_{0}}$	If $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$A=\varepsilon c l$	$\ln x=2.303 \log x$
$E=-A \frac{e^{2}}{4 \pi \varepsilon_{0} r} N_{\mathrm{A}}$	

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\begin{gathered} 1 \\ \text { Hyorocen } \\ \mathbf{H} \\ 1.008 \\ \hline \end{gathered}$																	$\begin{gathered} \hline 2 \\ \text { нвцим } \\ \mathbf{H e} \\ 4.003 \\ \hline \end{gathered}$
$\begin{gathered} \hline 3 \\ \text { цтиим } \\ \mathbf{L i} \\ 6.941 \end{gathered}$	$\begin{gathered} 4 \\ \text { вегримм } \\ \mathbf{B e} \\ 9.012 \end{gathered}$											$\begin{gathered} \hline \begin{array}{c} 5 \\ \text { Borow } \\ \mathbf{B} \\ 10.81 \end{array} \end{gathered}$	$\begin{gathered} \hline 6 \\ \substack{\text { саввом } \\ \mathbf{C} \\ 12.01 \\ \hline} \end{gathered}$	$\begin{gathered} 7 \\ \begin{array}{c} 7 \\ \text { мтrocen } \\ \mathbf{N} \\ 14.01 \end{array} \end{gathered}$	$\begin{gathered} 8 \\ \begin{array}{c} 8 \\ \text { oxcen } \\ \mathbf{O} \\ 16.00 \end{array} \end{gathered}$	$\begin{gathered} \hline 9 \\ \text { froorne } \\ \mathbf{F} \\ 19.00 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ \text { Now } \\ \mathbf{N e} \\ 20.18 \end{gathered}$
$\begin{gathered} \hline 11 \\ \text { sonum } \\ \mathbf{N a} \\ 22.99 \end{gathered}$	$\underset{\substack{12 \\ \text { Macnesum } \\ \mathbf{M g} \\ 24.31}}{\substack{9.012 \\ 20}}$											$\begin{gathered} \hline 13 \\ \text { Аимммим } \\ \text { Al } \\ 26.98 \end{gathered}$	$\begin{gathered} \hline 14 \\ \text { sulcon } \\ \mathbf{S i} \\ 28.09 \end{gathered}$	15 phosphorus \mathbf{P} 30.97 33	$\begin{gathered} 16 \\ \text { sururu } \\ \mathbf{S} \\ 32.07 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ \substack{\text { chorne } \\ \text { Cl } \\ 35.45} \end{gathered}$	$\begin{gathered} \hline 18 \\ \text { ARGoN } \\ \mathbf{A r} \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \text { porassum } \\ \mathbf{K} \\ 39.10 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ \text { сансим } \\ \text { Ca } \\ 40.08 \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 \\ \text { scanvom } \\ \text { Sc } \\ 44.96 \\ \hline \end{gathered}$	$\begin{gathered} \hline 22 \\ \text { ттамлм } \\ \mathbf{T i} \\ 47.88 \end{gathered}$	$\begin{gathered} 23 \\ \substack{\text { vanamum } \\ \mathbf{V} \\ 50.94 \\ \hline} \end{gathered}$	$\begin{gathered} 24 \\ \begin{array}{c} \text { снвомим } \\ \mathbf{C r} \\ 52.00 \end{array} \end{gathered}$	25mancanese $\mathbf{M n}$ 54.94$\|$	$\begin{gathered} \hline 26 \\ \text { 1RoN } \\ \text { Fe } \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 27 \\ \text { соват } \\ \text { Co } \\ 58.93 \end{gathered}$	$\begin{gathered} \hline 28 \\ \text { міске } \\ \mathbf{N i} \\ 58.69 \end{gathered}$	$\begin{gathered} \hline 29 \\ \text { coper } \\ \mathbf{C u} \\ 63.55 \end{gathered}$	$\begin{gathered} \hline 30 \\ \text { ZINC } \\ \text { Zn } \\ 65.39 \end{gathered}$	$\begin{gathered} \hline 31 \\ \text { сайм } \\ \text { Ga } \\ 69.72 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 32 \\ \text { сввамлим } \\ \mathbf{G e} \\ 72.59 \\ \hline \end{array}$	$\begin{gathered} \hline 33 \\ \text { ARsenc } \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} \hline 34 \\ \text { shentum } \\ \text { Se } \\ 78.96 \end{gathered}$	$\begin{gathered} \hline 35 \\ \text { вRouñe } \\ \mathbf{B r} \\ 79.90 \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ \substack{\text { кехугом } \\ \mathbf{K r} \\ 83.80} \end{gathered}$
	38 38 stoontum $\mathbf{S r}$ 87.62 56		$\begin{gathered} 40 \\ \text { zівсомим } \\ \mathbf{Z r} \\ 91.22 \\ \hline \end{gathered}$	$\begin{gathered} 41 \\ \text { мовим } \\ \mathbf{N b} \\ 92.91 \\ \hline \end{gathered}$	42 моивbenum $\mathbf{M o}$ 95.94	$\begin{gathered} 43 \\ \text { теснептмм } \\ \text { Tc } \\ {[98.91]} \\ \hline \end{gathered}$	$\begin{gathered} 44 \\ \text { RUHLNNM } \\ \mathbf{R u} \\ 101.07 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 45 \\ \text { Rнооим } \\ \mathbf{R h} \\ 102.91 \\ \hline \end{array}$	$\begin{gathered} \hline 46 \\ \text { Райарим } \\ \text { Pd } \\ 106.4 \\ \hline \end{gathered}$	$\begin{gathered} \hline 47 \\ \text { sulver } \\ \mathbf{A g} \\ 107.87 \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ \begin{array}{c} 48 \\ \text { canum } \\ \text { Cd } \\ 112.40 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \hline 49 \\ \text { мnoum } \\ \text { In } \\ 114.82 \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ \text { riv } \\ \text { Sn } \\ 118.69 \\ \hline \end{gathered}$	$\begin{gathered} \hline 51 \\ \text { ANтmony } \\ \text { Sb } \\ 121.75 \\ \hline \end{gathered}$	$\begin{gathered} \hline 52 \\ \text { тецuruм } \\ \mathbf{T e} \\ 127.60 \\ \hline \end{gathered}$	$\begin{gathered} 53 \\ \text { 1onNe } \\ \text { I } \\ 126.90 \\ \hline \end{gathered}$	$\begin{gathered} 54 \\ \text { Xenon } \\ \mathbf{X e} \\ 131.30 \\ \hline \end{gathered}$
$\begin{gathered} \hline 55 \\ \text { сакsum } \\ \text { Cs } \\ 132.91 \\ \hline \end{gathered}$	$\begin{gathered} \hline 56 \\ \substack{\text { вадлим } \\ \mathbf{B a} \\ 137.34 \\ \hline} \end{gathered}$	57－71	$\begin{gathered} \hline 72 \\ \text { нанлим } \\ \mathbf{H f} \\ 178.49 \end{gathered}$	$\begin{gathered} \hline 73 \\ \text { талтаим } \\ \mathbf{T a} \\ 180.95 \\ \hline \end{gathered}$	$\begin{gathered} 74 \\ \text { tuncstren } \\ \mathbf{W} \\ 183.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 75 \\ \text { RнеNUм } \\ \mathbf{R e} \\ 186.2 \\ \hline \end{gathered}$	$\begin{gathered} 76 \\ \text { osmum } \\ \text { Os } \\ 190.2 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 77 \\ \text { remum } \\ \mathbf{I r} \\ 192.22 \\ \hline \end{array}$		$\begin{gathered} 79 \\ \text { сош } \\ \text { Au } \\ 196.97 \end{gathered}$	$\begin{gathered} 80 \\ \text { MRRCury } \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{gathered} \hline 81 \\ \text { тнацим } \\ \mathbf{T l} \\ 204.37 \\ \hline \end{gathered}$	$\begin{gathered} \hline 82 \\ \text { LEAD } \\ \text { Pb } \\ 207.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 83 \\ \text { Bігмитн } \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} \hline 84 \\ \text { poonvum } \\ \mathbf{P o} \\ {[210.0]} \\ \hline \end{gathered}$	$\begin{gathered} 85 \\ \text { Astatine } \\ \text { At } \\ {[210.0]} \end{gathered}$	$\begin{gathered} 86 \\ \begin{array}{c} 8 \text { Ranow } \\ \mathbf{R n} \\ {[222.0]} \end{array} \end{gathered}$
$\begin{gathered} \hline 87 \\ \text { francum } \\ \text { Fr } \\ {[223.0]} \\ \hline \end{gathered}$	$\begin{gathered} 88 \\ \begin{array}{c} 8 \text { Ranum } \\ \mathbf{R a} \\ {[226.0]} \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ~ \end{gathered}$	89－103	104 Rutubreronum $\mathbf{R f}$ $[261]$	$\begin{gathered} \hline 105 \\ \text { оивлим } \\ \text { Db } \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 106 \\ \text { sеввоксим } \\ \mathbf{S g} \\ {[266]} \\ \hline \end{gathered}$	$\begin{gathered} 107 \\ \text { вонвим } \\ \text { Bh } \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 108 \\ \text { Hassum } \\ \text { Hs } \\ {[265]} \\ \hline \end{gathered}$	109 мегNerum $\mathbf{M t}$ $[266]$	110 $\left.\begin{array}{c}\text { DARSSTARTUM } \\ \text { Ds } \\ {[271]}\end{array}\right]$	111 Rg ［272］							

LANTHANIDES	$\begin{gathered} 57 \\ \text { Lалтнамим } \\ \mathbf{L a} \\ 138.91 \\ \hline \end{gathered}$	$\begin{gathered} 58 \\ \text { cerrum } \\ \mathbf{C e} \\ 140.12 \\ \hline \end{gathered}$	59 pRascopxaum $\mathbf{P r}$ 140.91 91	$\begin{gathered} \hline \begin{array}{c} 60 \\ \text { меормим } \\ \text { Nd } \\ 144.24 \end{array} \end{gathered}$	61 роомгним $\mathbf{P m}$ $[144.9]$ 93	$\begin{gathered} \hline 62 \\ \text { samarum } \\ \text { Sm } \\ 150.4 \\ \hline \end{gathered}$	$\begin{gathered} 63 \\ \substack{6 \text { еиворим } \\ \text { Eu } \\ 151.96 \\ \hline} \end{gathered}$	$\begin{gathered} 64 \\ \text { сароним } \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} \hline 65 \\ \text { теввим } \\ \mathbf{T b} \\ 158.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 66 \\ \text { dxsprosum } \\ \mathbf{D y} \\ 162.50 \\ \hline \end{gathered}$	$\begin{gathered} \hline 67 \\ \text { ноимим } \\ \mathbf{H o} \\ 164.93 \\ \hline \end{gathered}$			$\begin{gathered} 70 \\ \text { мттввим } \\ \mathbf{Y b} \\ 173.04 \\ \hline \end{gathered}$	$\begin{gathered} \hline 71 \\ \text { Lотетим } \\ \mathbf{L u} \\ 174.97 \\ \hline \end{gathered}$
ACTINIDES	$\begin{gathered} 89 \\ \text { Астимим } \\ \text { Ac } \\ {[227.0]} \end{gathered}$	$\begin{gathered} \hline 90 \\ \text { тновим } \\ \text { Th } \\ 232.04 \\ \hline \end{gathered}$	91 $\left.\begin{array}{c}\text { protactinuм } \\ \mathbf{P a} \\ {[231.0]}\end{array}\right]$	$\begin{gathered} \hline 92 \\ \text { URANuM } \\ \mathbf{U} \\ 238.03 \end{gathered}$	$\begin{gathered} 93 \\ \text { мертимим } \\ \mathbf{N p} \\ {[237.0]} \\ \hline \end{gathered}$	$\begin{gathered} 94 \\ \text { puronum } \\ \mathbf{P u} \\ {[239.1]} \end{gathered}$	95 $\left.\begin{array}{c}\text { АмеRстим } \\ \mathbf{A m} \\ {[243.1]}\end{array}\right]$	$\begin{gathered} \hline 96 \\ \text { curum } \\ \mathbf{C m} \\ {[247.1]} \\ \hline \end{gathered}$	97 $\left.\begin{array}{c}\text { веккецим } \\ \mathbf{B k} \\ {[247.1]}\end{array}\right]$	98 сайновммм Cf $[252.1]$	99 Enstenum Es $[252.1]$	$\begin{gathered} 100 \\ \text { геваим } \\ \text { Fm } \\ {[257.1]} \end{gathered}$	101 $\substack{\text { Meñervum } \\ \text { Md } \\[256.1]}$	$\begin{gathered} \hline 102 \\ \text { мовним } \\ \text { No } \\ {[259.1]} \end{gathered}$	$\begin{gathered} 103 \\ \text { Lawnencum } \\ \mathbf{L r} \\ {[260.1]} \end{gathered}$

