Chemistry 1Adv/1SSP (Chem1901/1903) June 2006

- a) The principle that states that no 2 electrons in an atom can have the same set of quantum numbers.
b) A measure of the ability of an atom to attract the electron density in a covalent bond.
c) The low energy state found in ionic solids associated with the Coulombic attraction of unlike charged ions.
d) A description of an atom or molecule that has an unpaired electron spin that results in a net magnetic moment.
e) A semiconductor made by doping with Group 15 atoms. The extra electrons occupy orbitals in the conductance band. These few electrons are free to move and carry the current.
e) A bond formed by the end-to-end overlap of atomic orbitals. The maximum electron density is between the nuclei along the bond axis. It has lower energy than the atomic orbitals from which it was formed.

2006-J-3

- | ${ }_{25}^{55} \mathrm{Mn}$ |
| :--- |
| |
| $\quad{ }_{-1}^{0} \beta$ or ${ }_{-1}^{0} \mathrm{e}$ |
| ${ }^{25} \mathrm{P}$ |
| β^{-}decay |
| β^{+}decay or electron capture |
| |
| α decay |

Electrons occupy certain stable "orbits" that correspond to the standing waves obtained by solving the Shrödinger Equation. Each solution (orbital) corresponds to a different allowed energy level. As a consequence of this;
(a) atoms do not spiral in towards the nucleus despite the electrostatic attraction between them.
(b) the light emitted by excited atoms is a series of discrete spectral lines corresponding to the energy differences between the allowed energy states.
2006-J-4

- $\quad \mathrm{LiF} \mathrm{LiCl}$ KF NaCl

- Each has a 1:1 ratio of cations to anions. The different crystal structures arise because of the relative differences in sizes between the cations and anions. eg the small Na^{+} ions can fit between the large Cl^{-}ions, whereas the larger Cs^{+}ions cannot.

2006-J-5

2.5
σ to π^{*} or π^{*} to σ^{*} (You can't really tell which is the smaller energy gap on the diagram.)
2006-J-6
-
A $1 \begin{array}{lll}1 & 2 & \text { bent }\end{array}$
B $\quad 0 \quad 3 \quad$ trigonal planar
C $1 \begin{array}{lll}\text { C } & 3 & \text { trigonal pyramidal }\end{array}$

- $\quad 4.84 \times 10^{-18} \mathrm{~J} \quad 41.0 \mathrm{~nm}$

2006-J-7

- $\quad \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})$
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$96 \mathrm{~kJ} \mathrm{~mol}^{-1}$
216 K

2006-J-8
$\mathrm{NaNO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$
$20.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
1.68 s

2006-J-9

- $\quad 0.631 \mathrm{~atm} \quad 1.89 \mathrm{~atm} \quad 8.07 \times 10^{-3} \mathrm{~atm}$
- $\quad \mathrm{Fe}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \quad E^{\circ}{ }_{\mathrm{ox}}=-0.77 \mathrm{~V}$
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad E_{\text {red }}^{\circ}=+1.23 \mathrm{~V}$
$4 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 4 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O} \quad E^{\circ}{ }_{\text {cell }}=+0.46 \mathrm{~V}$
Reaction is spontaneous so Fe^{2+} unstable in presence of $\mathrm{O}_{2} / \mathrm{H}^{+}$.
$\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
$E^{\circ}{ }_{\text {ox }}=+0.44 \mathrm{~V}$
$\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
$E^{\circ}{ }_{\text {ox }}=+0.76 \mathrm{~V}$

So $\mathrm{Zn}(\mathrm{s})$ is oxidised preferentially to $\mathrm{Fe}(\mathrm{s})$.
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \times 2$
$E_{\text {red }}^{\circ}=+0.53 \mathrm{~V}$
$\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
$E^{\circ}{ }_{o x}=-0.34 \mathrm{~V}$
$2 \mathrm{Cu}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
$E^{\circ}{ }_{\text {cell }}=+0.19 \mathrm{~V}$

Therefore spontaneous disproportionation into Cu^{2+} ions and Cu metal.

2006-J-11

- At the cathode, water is reduced to H_{2} rather than sodium being reduced to Na metal due to the relative reduction potentials.
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s}) \times 2 \quad E_{\text {red }}^{\circ}=-2.71 \mathrm{~V}$
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \quad E_{\text {red }}^{\circ}=-0.83 \mathrm{~V}$
At the anode, the overpotential for the formation of $\mathrm{O}_{2}(\mathrm{~g})$ is much greater than the overpotential for the formation of $\mathrm{Cl}_{2}(\mathrm{~g})$. Hence Cl_{2} produced preferentially, despite the E° values of the two oxidations which suggest O_{2} should form.
$2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \quad E^{\circ}{ }_{o \mathrm{x}}=-1.23 \mathrm{~V}$
$2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \quad E^{\circ}{ }_{\text {ox }}=-1.36 \mathrm{~V}$
$1.33 \times 10^{6} \mathrm{~A}$
$1.44 \times 10^{8} \mathrm{~kJ}$
2006-J-12
- In any spontaneous reaction, the entropy of the universe always increases.

The enthalpy of reaction defines the heat released into or absorbed from the surroundings at constant temperature and pressure.
The entropy change of the surroundings is $q / T=\Delta H_{\mathrm{rxn}} / T$
melting of ice:
burning of ethane

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

freezing of water:

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})
$$

