CHEMISTRY 1A (ADVANCED) - CHEM1901

CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) - CHEM1903

CONFIDENTIAL

JUNE 2005

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME		SID	
OTHER		TABLE	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 24 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 20, 24 and 28 are for rough working only.

OFFICIAL USE ONLY

Short answer section

Page	Marks			Marker
	Max	Gained		
14	5			
15	8			
16	5			
17	6			
18	5			
19	4			
21	6			
22	4			
23	3			
25	6			
26	4			
27	4			
Total	60			

- In the spaces provided, explain the meaning of the following terms. You may use an example, equation or diagram where appropriate.
(a) antibonding orbital
(b) paramagnetic
(c) ionic bond
(d) nuclear fission
(e) electron affinity
- Balance the following nuclear reactions by identifying the missing nuclide.

- Over 50 years, the activity of a sample of strontium- 90 decreases from 1000 Bq to 303 Bq. Calculate the half-life of strontium- 90 (in years) to the nearest year.
\qquad
- Identify three desirable properties of an unstable isotope to be used in medical imaging.
- In the 1770's, Joseph Priestley first identified the gases we know as O_{2} and CO_{2} and showed that the former was converted to the latter during combustion. Briefly explain how these observations contributed to the formulation of the atomic theory.
\square
- Identify one property used by Mendeleev to organise elements in his periodic table.
\qquad
Provide a brief explanation of the origin of the periodicity of this property in terms of the quantum theory of atomic structure.
- Arrange the following atoms and ions in order of increasing radius.

$\mathrm{P}, \mathrm{Na}, \mathrm{Na}^{+}, \mathrm{N}$ and K					
smallest radius					

- Describe (or sketch) the shape and arrangement of the nodes in the following three atomic orbitals: $2 \mathrm{~s}, 2 p$ and 3 s .
- Explain the different roles of neutrons and protons in stabilising nuclei.
- Explain, with reference to the distribution of electronic energy levels, why crystalline SiO_{2} (quartz) is transparent while crystalline Fe is opaque.
- The structure of N-methylbenzamide is shown below. Complete the table concerning the atoms \mathbf{A}, \mathbf{B} and \mathbf{C} indicated by the arrows.

Selected atom	Number of electron lone pairs about the selected atom	Number of σ-bonds associated with the selected atom	Geometry of bonds about the selected atom
A			
B			
C			

- The lowest four energy levels of the He^{+}ion are given.

Principal quantum number (n)	Energy (J)
1	-8.720×10^{-18}
2	-2.180×10^{-18}
3	-0.969×10^{-18}
4	-0.545×10^{-18}

An electronic transition is identified by specifying the value of n of the initial state and the value of n of the final state. Identify the electronic transition responsible for the emission of radiation from He^{+}with a wavelength of 30.4 nm ?

- The electronic configuration of molecular nitrogen in its ground state is, in order (from left to right) of orbitals of increasing energy:

Marks

4

$$
\sigma^{2} \sigma^{* 2} \sigma^{2} \sigma^{* 2} \pi^{4} \sigma^{2}
$$

What is the bond order of N_{2} ?
\square
How many of the valence electrons in N_{2} are in non-bonding 'lone pairs' according to Lewis theory?

On the electron configuration of N_{2} below, indicate by arrows the molecular orbitals that contain the non-bonding electrons.

$$
\sigma^{2} \sigma^{* 2} \sigma^{2} \sigma^{* 2} \pi^{4} \sigma^{2}
$$

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

- Write the equation whose enthalpy change represents the standard enthalpy of formation of $\mathrm{NO}(\mathrm{g})$.

Given the following data, calculate the standard enthalpy of formation of $\mathrm{NO}(\mathrm{g})$.

$$
\begin{array}{lll}
\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) & \rightleftharpoons & \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})
\end{array} \quad \Delta H^{\circ}=66.6 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{C}=2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta H^{\circ}=-114.1 \mathrm{~kJ} \mathrm{~mol}^{-1} .
$$

\square
Derive the relationship $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$ for a reaction in which gases are involved.
Δn is the difference in the number of moles of gases between products and reactants.

- In an experiment, 50.0 mL of $1.00 \mathrm{M} \mathrm{HNO}_{3}$ was combined with 50.0 mL of 0.540 M NaOH in a calorimeter. Give an equation for the reaction that took place.

The temperature of the solution was found to increase by $2.98^{\circ} \mathrm{C}$. If the heat capacity of the calorimeter was $80.0 \mathrm{~J} \mathrm{~K}^{-1}$ and the heat capacity of the final solution was $426 \mathrm{~J} \mathrm{~K}^{-1}$, determine the molar heat of reaction.
\square
The average bond enthalpy of the $\mathrm{O}-\mathrm{H}$ bond is $463 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Explain briefly why the heat of neutralisation calculated in the first part of this question differs significantly from this value.

- At 773 K , the following reaction has an equilibrium constant, K_{p}, of $3.90 \times 10^{-3} \mathrm{~atm}^{-1}$.

Marks
3

$$
{ }^{1} / 2 \mathrm{~N}_{2}(\mathrm{~g})+{ }^{3} / 2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})
$$

If sufficient ammonia were introduced into an evacuated container at 773 K to give a pressure of 1.00 atm before any decomposition occurred, what would be the partial pressures of $\mathrm{N}_{2}, \mathrm{H}_{2}$ and NH_{3} at equilibrium?

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

- Use electrochemical potentials to show the following.
$\mathrm{Fe}^{2+}(\mathrm{aq})$ is stable in oxygen-free $\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{Fe}^{2+}(\mathrm{aq})$ is not stable under $1 \mathrm{~atm} \mathrm{O}_{2}$ in a 1 M solution of HCl .
\square
$\mathrm{Fe}^{2+}(\mathrm{aq})$ is stable under $1 \mathrm{~atm} \mathrm{O}_{2}$ in the presence of iron metal.
$\mathrm{Cu}^{+}(\mathrm{aq})$ is not stable in water.
- In the chlor-alkali process $\mathrm{OH}^{-}(\mathrm{aq})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$ are produced by the electrolysis of a saturated solution of sodium chloride. Explain why chlorine gas rather than oxygen

Marks gas forms at the anode.

Calculate the volume of chlorine gas produced at $0^{\circ} \mathrm{C}$ and 1 atm by passing a current of 1.00 A for a period of exactly 1 hour in the chlor-alkali process.
\square
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

- State the Second Law of Thermodynamics and explain how this relates to the Gibbs

Marks

Give an example of a chemical reaction or a chemical process that corresponds to each of the following.
$\Delta S>0, \Delta H>0, \Delta G<0$

$$
\Delta S>0, \Delta H<0, \Delta G<0
$$

\square

$$
\Delta S<0, \Delta H<0, \Delta G<0
$$

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{\mathrm{e}}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{p}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0{ }^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples
Multiple Prefix Symbol 10^{3} kilo k $10^{6} \quad$ mega M
$10^{9} \quad$ giga $\quad G$

CHEM1901 - CHEMISTRY 1A (ADVANCED)

CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Standard Reduction Potentials, E°

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$	+1.72
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.23
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd}(\mathrm{s})$	+0.92
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}{ }^{2+}(\mathrm{aq})$	+0.15
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}(\mathrm{g})$	$0(\mathrm{by}$ definition $)$
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.04
$\mathrm{~Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.24
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{s})$	-0.28
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.74
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.76
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}(\mathrm{g})+2 \mathrm{OH}(\mathrm{aq})$	-0.83
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.36
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$	-2.71

CHEM1901 - CHEMISTRY 1A (ADVANCED)

CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Useful formulas

Quantum Chemistry	Radioactivity
$E=h \nu=h c / \lambda$	
$\lambda=h / m v$	
$4.5 k_{\mathrm{B}} T=h \mathrm{c} / \lambda$	$\ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t$
$E=Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right)$	${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$
Acids and Bases $\begin{aligned} & \mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00 \\ & \mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00 \\ & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\} \end{aligned}$	Gas Laws $\begin{aligned} & P V=n R T \\ & \left(P+n^{2} a / V^{2}\right)(V-n b)=n R T \end{aligned}$
Colligative properties $\begin{aligned} & \pi=\mathrm{c} R T \\ & P_{\text {solution }}=X_{\text {solvent }} \times P_{\text {solvent }}^{\circ} \\ & \mathrm{p}=k \mathrm{c} \\ & \Delta T_{\mathrm{f}}=K_{\mathrm{f}} m \\ & \Delta T_{\mathrm{b}}=K_{\mathrm{b}} m \end{aligned}$	Kinetics $\begin{aligned} & t_{1 / 2}=\ln 2 / k \\ & k=A \mathrm{e}^{-E a / R T} \\ & \ln [\mathrm{~A}]=\ln [\mathrm{A}]_{0}-k t \\ & \ln \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \end{aligned}$
Electrochemistry $\Delta G^{\circ}=-n F E^{\circ}$ Moles of $e^{-}=I t / F$ $\begin{aligned} E & =E^{\circ}-(R T / n F) \times 2.303 \log Q \\ & =E^{\circ}-(R T / n F) \times \ln Q \\ E^{\circ} & =(R T / n F) \times 2.303 \log K \\ & =(R T / n F) \times \ln K \\ E & =E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right) \end{aligned}$	Thermodynamics \& Equilibrium $\begin{aligned} & \Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \\ & \Delta G=\Delta G^{\circ}+R T \ln Q \\ & \Delta G^{\circ}=-R T \ln K \\ & K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n} \end{aligned}$
Polymers $R_{\mathrm{g}}=\sqrt{\frac{n l_{0}^{2}}{6}}$	Mathematics If $\mathrm{ax}{ }^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$ $\ln x=2.303 \log x$

NTH	57 Lumpune La 138.91 89	$\begin{gathered} 58 \\ \text { chaun } \\ \text { Ce } \\ 140.12 \\ \hline \end{gathered}$	$\begin{gathered} 59 \\ \substack{\text { nexscomomum } \\ \mathbf{P r} \\ 140.91 \\ \hline} \end{gathered}$	$\begin{gathered} 60 \\ \text { Meommun } \\ \text { Nd } \\ 144.24 \\ \hline \end{gathered}$	$\begin{gathered} 61 \\ \text { prowerrum } \\ \mathbf{P m} \\ {[144.9]} \end{gathered}$	$\begin{gathered} \hline 62 \\ \text { senverum } \\ \text { smm } \\ 150.4 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 640 } \\ \text { Eunerum } \\ \text { Eu } \\ 151.96 \\ \hline \end{gathered}$	$\begin{gathered} 64 \\ \text { caunum } \\ \text { Gd } \\ 157.25 \\ \hline \end{gathered}$	$\begin{gathered} 65 \\ \text { 6numu } \\ \text { Trb } \\ 158.93 \end{gathered}$	$\begin{gathered} 66 \\ \text { oxseresum } \\ \text { Dy } \\ 162.50 \\ \hline \end{gathered}$	$\begin{gathered} \hline 67 \\ \text { nowum } \\ \text { Ho } \\ 164.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 68 \\ \text { treaven } \\ \text { Er } \\ 167.26 \\ \hline \end{gathered}$			$\begin{gathered} \hline 71 \\ \text { whrruen } \\ \text { Luw } \\ 174.97 \\ \hline \end{gathered}$
actinides	$\begin{gathered} 89 \\ \text { nermun } \\ \text { Ac } \\ {[227.0]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 90 \\ \text { monerum } \\ \text { Th } \\ 232.04 \\ \hline \end{gathered}$	$\begin{gathered} 91 \\ \hline \text { perocrantum } \\ \mathbf{P a} \\ {[231.0]} \\ \hline \end{gathered}$	$\begin{gathered} 92 \\ \substack{\text { unwewn } \\ \mathbf{U} \\ 238.03 \\ \hline} \\ \hline \end{gathered}$		94 nuroxum $\mathbf{P u}$ $[239.1]$	$\begin{gathered} 95 \\ \text { ммnacum } \\ \text { Am } \\ {[243.1]} \end{gathered}$	$\begin{gathered} 96 \\ \begin{array}{c} \text { curum } \\ \text { Cm } \\ {[247.1]} \end{array} \\ \hline \end{gathered}$	97 $\left.\begin{array}{c}\text { nexamum } \\ \text { Bk } \\ {[247.1]}\end{array}\right]$	98 catronum Cf [252.1]	99 enstenum Es $[252.1]$	$\begin{gathered} 100 \\ \text { rexumum } \\ \text { Fm } \\ {[257.1]} \\ \hline \end{gathered}$	101 мrempurum Md $[256.1]$	102 nonurum No [259.1]	$\begin{gathered} 103 \\ \text { Luxnearum } \\ \mathbf{L r} \\ {[260.1]} \end{gathered}$

