22/08(a)

The University of Sydney

CHEMISTRY 1A (ADVANCED) - CHEM1901

CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) - CHEM1903

CONFIDENTIAL

JUNE 2005

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 24 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 20, 24 and 28 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

		Marks
		TTUI III
Pages	Max	Gained
2-13	40	

Short answer section

	Marks			
Page	Max	Gained		Marker
14	5			
15	8			
16	5			
17	6			
18	5			
19	4			
21	6			
22	4			
23	3			
25	6			
26	4			
27	4			
Total	60			

• In the spaces provided, explain the meaning of the following terms. You may use an example, equation or diagram where appropriate.	Marks 5
(a) antibonding orbital	
(b) paramagnetic	
(c) ionic bond	
	_
(d) nuclear fission	
(e) electron affinity	-
	_

Marks • Balance the following nuclear reactions by identifying the missing nuclide. 3 $_{26}^{55}\mathrm{Fe}$ + $_{-1}^{0}\mathrm{e}$ \rightarrow $^{232}_{90}$ Th $\rightarrow ^{4}_{2}\alpha$ + $^{218}_{84}$ Po \rightarrow $^{0}_{-1}e$ + 2 • Over 50 years, the activity of a sample of strontium-90 decreases from 1000 Bq to 303 Bq. Calculate the half-life of strontium-90 (in years) to the nearest year. Answer: 3 • Identify three desirable properties of an unstable isotope to be used in medical imaging.

								1
•		he former v	vas converte	ed to the lat	ter during c	ombustion.	and CO ₂ and Briefly explain eory.	Marks 2
•	Identify one j	property use	ed by Mende	eleev to org	anise eleme	nts in his pe	riodic table.	2
								-
	Provide a brid the quantum				periodicity of	of this prope	erty in terms of	
•	Arrange the f	following at	oms and ior	ns in order c	of increasing	g radius.		1
			P, N	a, Na^+, Na^+	nd K			
	smallest radius						largest radius	

CHEM1901/1903	2005-J-5	June 2005	22/08(a)
• Describe (or sketc atomic orbitals: 2s	h) the shape and arrangement of the s , $2p$ and $3s$.	nodes in the following three	Marks 2
		. 1 11	2
• Explain the differe	ent roles of neutrons and protons in s	tabilising nuclei.	
	rence to the distribution of electronic ansparent while crystalline Fe is opac		2

• The structure of *N*-methylbenzamide is shown below. Complete the table concerning the atoms **A**, **B** and **C** indicated by the arrows. **Marks**

Selected atom	Number of electron lone pairs about the selected atom	Number of σ-bonds associated with the selected atom	Geometry of bonds about the selected atom
Α			
В			
С			

• The lowest four energy levels of the He⁺ ion are given.

Principal quantum number (<i>n</i>)	Energy (J)
1	-8.720×10^{-18}
2	-2.180×10^{-18}
3	-0.969×10^{-18}
4	-0.545×10^{-18}

An electronic transition is identified by specifying the value of n of the initial state and the value of n of the final state. Identify the electronic transition responsible for the emission of radiation from He⁺ with a wavelength of 30.4 nm?

2

• The electronic configuration of molecular nitrogen in its ground state is, in order (from left to right) of orbitals of increasing energy: $\sigma^{2}\sigma^{*2}\sigma^{2}\sigma^{*2}\pi^{4}\sigma^{2}$ What is the bond order of N₂?

How many of the valence electrons in N_2 are in non-bonding 'lone pairs' according to Lewis theory?

On the electron configuration of N_2 below, indicate by arrows the molecular orbitals that contain the non-bonding electrons.

 $\sigma^2 \sigma^{*2} \sigma^2 \sigma^{*2} \pi^4 \sigma^2$

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks • Write the equation whose enthalpy change represents the standard enthalpy of 3 formation of NO(g). Given the following data, calculate the standard enthalpy of formation of NO(g). $2NO_2(g) \qquad \Delta H^\circ = 66.6 \text{ kJ mol}^{-1}$ $N_2(g) + 2O_2(g)$ __ $2NO_2(g)$ $\Delta H^\circ = -114.1 \text{ kJ mol}^{-1}$ $2NO(g) + O_2(g) \implies$ Answer: 3 Derive the relationship $K_p = K_c(RT)^{\Delta n}$ for a reaction in which gases are involved. Δn is the difference in the number of moles of gases between products and reactants.

-	0 M HNO ₃ was combined with 50.0 mL of 0.540 M equation for the reaction that took place.
	1 1
	vas found to increase by 2.98 °C. If the heat capacity
of the calorimeter was 80.0 J K ⁻¹ 426 J K ⁻¹ , determine the molar he	and the heat capacity of the final solution was eat of reaction.
	Answer:
heat of neutralisation calculated in	Answer: e O-H bond is 463 kJ mol ^{-1} . Explain briefly why the n the first part of this question differs significantly
heat of neutralisation calculated in	\sim O-H bond is 463 kJ mol ⁻¹ . Explain briefly why the
heat of neutralisation calculated in	\sim O-H bond is 463 kJ mol ⁻¹ . Explain briefly why the
	\sim O-H bond is 463 kJ mol ⁻¹ . Explain briefly why the
heat of neutralisation calculated in	\sim O-H bond is 463 kJ mol ⁻¹ . Explain briefly why the

• At 773 K, the following reaction has an equilibrium constant, K_p , of 3.90×10^{-3} atm ⁻¹ . $^{1}/_{2}N_{2}(g) + ^{3}/_{2}H_{2}(g) \implies NH_{3}(g)$	Marks 3
If sufficient ammonia were introduced into an evacuated container at 773 K to give a pressure of 1.00 atm before any decomposition occurred, what would be the partial pressures of N_2 , H_2 and NH_3 at equilibrium?	
$P(N_2) = P(H_2) = P(NH_3) =$	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

• Use electrochemical potentials to show the following.	Marks 6
$Fe^{2+}(aq)$ is stable in oxygen-free H ₂ O.	U
$Fe^{2+}(aq)$ is not stable under 1 atm O ₂ in a 1 M solution of HCl.	
$Fe^{2+}(aq)$ is stable under 1 atm O_2 in the presence of iron metal.	
Cu ⁺ (aq) is not stable in water.	

Marks • In the chlor-alkali process $OH^{-}(aq)$ and $Cl_{2}(g)$ are produced by the electrolysis of a 4 saturated solution of sodium chloride. Explain why chlorine gas rather than oxygen gas forms at the anode. Calculate the volume of chlorine gas produced at 0 °C and 1 atm by passing a current of 1.00 A for a period of exactly 1 hour in the chlor-alkali process. Answer:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

•	State the Second Law of Thermodynamics and explain how this relates to the Gibbs Free Energy.	Marks 4
		-
		-
	Give an example of a chemical reaction or a chemical process that corresponds to each of the following.	
	$\Delta S > 0, \Delta H > 0, \Delta G < 0$	-
	$\Delta S > 0, \Delta H < 0, \Delta G < 0$	-
	$\Delta S < 0, \Delta H < 0, \Delta G < 0$	-
		-

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

DATA SHEET

Physical constants Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \text{ kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Decimal fractions								
Fraction	Prefix	Symbol						
10^{-3}	milli	m						
10^{-6}	micro	μ						
10^{-9}	nano	n						
10^{-12}	pico	р						

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10 ⁶	mega	Μ
10 ⁹	giga	G

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Standard Reduction Potentials, E°								
Reaction	E° / V							
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82							
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72							
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36							
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$	+1.23							
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92							
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80							
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77							
$\mathrm{Cu}^+(\mathrm{aq}) + \mathrm{e}^- \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.53							
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34							
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15							
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)							
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04							
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13							
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14							
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24							
$\operatorname{Co}^{2^+}(\operatorname{aq}) + 2e^- \rightarrow \operatorname{Co}(s)$	-0.28							
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44							
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74							
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76							
$2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83							
$\operatorname{Cr}^{2^+}(\operatorname{aq}) + 2e^- \rightarrow \operatorname{Cr}(s)$	-0.89							
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68							
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36							
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71							

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Useful formulas						
Quantum Chemistry	Radioactivity					
$E = hv = hc/\lambda$	$t_{1/2} = \ln 2/\lambda$					
$\lambda = h/mv$	$A = \lambda N$					
$4.5k_{\rm B}T = hc/\lambda$	$\ln(N_0/N_t) = \lambda t$					
$E = Z^2 E_{\rm R}(1/n^2)$	14 C age = 8033 ln(A_0/A_t)					
Acids and Bases	Gas Laws					
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT					
$pK_w = pK_a + pK_b = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$					
$pH = pK_a + \log\{[A^-] / [HA]\}$						
Colligative properties	Kinetics					
$\pi = cRT$	$t_{1/2} = \ln 2/k$					
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$					
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$					
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$					
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2$					
Electrochemistry	Thermodynamics & Equilibrium					
$\Delta G^{\circ} = -nFE^{\circ}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$					
Moles of $e^- = It/F$	$\Delta G = \Delta G^{\circ} + RT \ln Q$					
$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$	$\Delta G^{\circ} = -RT \ln K$					
$= E^{\circ} - (RT/nF) \times \ln Q$	$K_{\rm p} = K_{\rm c} \ (RT)^{\Delta n}$					
$E^{\circ} = (RT/nF) \times 2.303 \log K$						
$= (RT/nF) \times \ln K$						
$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$						
Polymers	Mathematics					
$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$					
	$\ln x = 2.303 \log x$					

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen H 1.008																	2 нешим Не 4.003
3	4											5	6	7	8	9	10
LITHIUM Li	BERYLLIUM Be											BORON B	CARBON C	NITROGEN N	OXYGEN O	FLUORINE	NEON Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
sodium Na	MAGNESIUM Mg											ALUMINIUM	silicon Si	PHOSPHORUS P	SULFUR S	CHLORINE Cl	ARGON Ar
22.99	24.31											26.98	28.09	1 30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM K	CALCIUM CAL	SCANDIUM SC	TITANIUM Ti	vanadium V	CHROMIUM Cr	MANGANESE Mn	Fe	COBALT CO	NICKEL Ni	COPPER Cu	ZINC Zn	GALLIUM Ga	GERMANIUM Ge	ARSENIC AS	selenium Se	BROMINE Br	KRYPTON Kr
39.10	40.08	44.96	47.88		52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM Rb	STRONTIUM Sr	YTTRIUM Y	ZIRCONIUM	и повіим Nb	MOLYBDENUM MO	TECHNETIUM TC	RUTHENIUM Ru	RHODIUM Rh	PALLADIUM Pd		CADMIUM CADMIUM	INDIUM INDIUM	ті» Sn	ANTIMONY Sb	TELLURIUM Te	IODINE I	xenon Xe
KD 85.47	87.62	∎ 88.91	91.22		95.94	[98.91]	101.07	102.91	106.4	Ag 107.87	112.40	114.82	118.69	121.75	127.60	∎ 126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM		HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
Cs 132.91	Ba 137.34		Hf 178.49	Ta 180.95	W 183.85	Re 186.2	Os 190.2	Ir 192.22	Pt 195.09	Au 196.97	Hg 200.59	Tl 204.37	Pb 207.2	Bi 208.98	Po [210.0]	At [210.0]	Rn [222.0]
87	88	89-103		105	105.05	100.2	108	102.22	175.07	170.77	200.37	204.37	207.2	200.70	[210.0]	[210.0]	[222.0]
FRANCIUM	RADIUM	07 103	RUTHERFORD	IUM DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM									
Fr			Rf	Db [262]	Sg	Bh [262]	Hs	Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
	5	7	58	59	60	61	62	63	64	65	5	66	67	68	69	70	71
LANTHAN	IDES LANT	HANUM CH	RIUM	PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIU	M TERBI	UM DY:	SPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM
				Pr	Nd	Pm	Sm	Eu	Gd			Dy	Ho	Er	Tm	Yb	
			0.12 90	140.91 91	144.24 92	[144.9] 93	150.4 94	151.96 95	157.25 96	5 158. 97		52.50 1 98	.64.93 99	167.26 100	168.93 101	173.04 102	174.97 103
ACTINID		INIUM TH	ORIUM	PROTACTINIUM	URANIUM	93 NEPTUNIUM	PLUTONIUM	93 AMERICIUM	90 curium	BERKEL	LIUM CAL	IFORNIUM E	NSTEINIUM	FERMIUM	IUI MENDELEVIUM	102 NOBELIUM	1U3 LAWRENCIUM
101100	A		Гh	Pa	U	Np	Pu	Am	Cm	B		Cf	Es	Fm	Md	No	Lr
	[22	7.0] 23	2.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1] [247	[.1] [2	52.1] [252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS

CHEM1901/1903

22/08(b)