CHEMISTRY 1A (ADVANCED) - CHEM1901

CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) - CHEM1903

CONFIDENTIAL

JUNE 2004
TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY		SID	
NAME		NUMBER	
OTHER		TABLE	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with $a \bullet$.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 14 and 24 are for rough working only.

OFFICIAL USE ONLY
Multiple choice section

Page	Marks			Marker
	Max	Gained		
12	10			
13	8			
15	9			
16	6			
17	4			
18	6			
19	5			
20	4			
21	6			
22	4			
23	4			
Total	66			

- In the spaces provided, explain the meaning of the following terms. You may use an example, equation or diagram where appropriate.
(a) anti-bonding orbital
(b) electron affinity
(c) nuclear fission
(d) electronegativity
(e) VSEPR model
- Balance the following nuclear reactions by identifying the missing nuclear particle or nuclide.

- The half-life of plutonium-239 is 24110 years. How many years (to the nearest year) must pass after ${ }_{94}^{239} \mathrm{Pu}$ is produced for the number of ${ }_{94}^{239} \mathrm{Pu}$ atoms to decay to 0.01000 of the original number?

- Provide a brief explanation of the process by which nuclear radiation causes biological damage.
- Complete the following table.

Formula	Lewis structure	Molecular shape	Is the molecule polar or non-polar?
e.g. $\mathrm{H}_{2} \mathrm{O}$		bent (angular)	polar
$\mathrm{CH}_{2} \mathrm{O}$			
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$			
$\mathrm{C}_{2} \mathrm{Cl}_{2}$			

- The lowest four energy levels of the He^{+}ion are given.

Principal quantum number (n)	Energy (J)
1	-8.720×10^{-18}
2	-2.180×10^{-18}
3	-0.969×10^{-18}
4	-0.545×10^{-18}

An electronic transition is identified by specifying the value of n of the initial state and the value of n of the final state. Identify the electronic transition responsible for the emission of radiation from He^{+}with a wavelength of 121.5 nm ?

- Nitrogen gas constitutes about 78\% of the Earth's atmosphere.

Complete the MO diagram for the valence electrons for the ground state electronic configuration of the nitrogen molecule by inserting the appropriate number of electrons into the appropriate orbitals.

Is N_{2} paramagnetic or diamagnetic? Explain your answer.
\square
The $\mathrm{N}_{2}{ }^{-}$anion can be generated as a transient species in an electrical discharge. What is the bond order of this molecular ion?
\square

- Why is the H_{2} molecule lower in energy than two isolated H atoms?
\square
- When 156 g of aluminium metal at $50.0^{\circ} \mathrm{C}$ is added to 100 g of water at $20.0^{\circ} \mathrm{C}$, the final temperature becomes $30.0^{\circ} \mathrm{C}$. The heat capacity of water is $4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$. Calculate the specific heat capacity of aluminium.

Answer:
What would the final temperature have been if the 156 g of aluminium metal at $50^{\circ} \mathrm{C}$ had been added to iced water containing 10 g ice and 90 g water at $0^{\circ} \mathrm{C}$?
ΔH for the freezing of water is $-6.02 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

- Explain the following features of the lead acid storage battery.

It has a relatively constant voltage.

It needs no salt bridge.

It can be recharged.
\square

- Explain why aluminium metal cannot be produced by the electrolysis of aqueous
solutions of aluminium salts. Explain why aluminium is produced by the electrolysis of a molten mixture of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ rather than by the electrolysis of molten $\mathrm{Al}_{2} \mathrm{O}_{3}$ alone.
- $\mathrm{RDX}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{6} \mathrm{O}_{6}\right)$ is a powerful explosive. Write the balanced chemical equation to describe the complete combustion of RDX to give water, carbon dioxide and nitrogen.

How does the equation for the explosive decomposition of RDX differ from the above equation?
\square
What properties of RDX make it a good explosive?

How much heat is liberated from the complete combustion of 100 g of RDX?

Compound	$\Delta H_{\mathrm{f}}{ }^{\circ}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-286
$\mathrm{CO}_{2}(\mathrm{~g})$	-394
$\mathrm{RDX}(\mathrm{s})$	+65

\square Answer:
Is the explosive decomposition of RDX likely to be entropically favourable?
(i.e. Is $\Delta S>0$?) Give reasons for your answer.

- Aluminium metal is a very effective agent for reducing oxides to their elements. For example, it is used as a component of the solid fuel in the space shuttle, and in the thermite reaction shown in lectures:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{~s})
$$

Write a balanced equation for the reduction of $\mathrm{SiO}_{2}(\mathrm{~s})$ to silicon by $\mathrm{Al}(\mathrm{s})$.

Given the following thermochemical data, evaluate the enthalpy change per gram of reactants for the SiO_{2} and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ reactions above.

Compound	$\Delta H_{\mathrm{f}}{ }^{\circ}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	-821
$\mathrm{Al}_{2} \mathrm{O}_{3}$	-1668
SiO_{2}	-877

N	
Answer $\left(\mathrm{SiO}_{2}\right):$	

Which set of reactants would make the better rocket fuel on the basis of most energy provided per mass of fuel (i.e. biggest "bounce per ounce")?

- Consider a solution that is 1 M in both H^{+}and Fe^{2+} ions under 1 atm of oxygen gas. Use the standard reduction potentials on the data sheet to show that Fe^{2+} ions are

Marks
6 unstable under these conditions.

Why can such solutions be preserved by the addition of iron metal? | \square |
| :---: |
| |
| |
| |

Will the change in the Gibbs Free Energy, ΔG, for the following reaction be positive or negative?

$$
\mathrm{Fe}(\mathrm{~s})+2 \mathrm{Fe}^{3+}(\mathrm{aq}) \rightleftharpoons 3 \mathrm{Fe}^{2+}(\mathrm{aq})
$$

\square
Calculate the reduction potential of a half-cell consisting of a platinum electrode immersed in a $2.0 \mathrm{M} \mathrm{Fe}^{2+}$ and $0.20 \mathrm{M} \mathrm{Fe}^{3+}$ solution at $25^{\circ} \mathrm{C}$.

- A saturated solution of iodine in water contains $0.330 \mathrm{~g} \mathrm{I}_{2}$ per litre, but more than this

Marks
4 amount can dissolve in a potassium iodide solution because of the following equilibrium.

$$
\mathrm{I}^{-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \quad \rightleftharpoons \mathrm{I}_{3}^{-}(\mathrm{aq})
$$

A 0.100 M KI solution dissolves 12.5 g of I_{2} per litre, most of which is converted to $\mathrm{I}_{3}{ }^{-}(\mathrm{aq})$. Assuming that the concentration of $\mathrm{I}_{2}(\mathrm{aq})$ in all saturated solutions is the same, calculate the equilibrium constant for the above reaction.
\qquad

- State the Second Law of Thermodynamics and give an equation to express this Law mathematically. Use this equation to derive the relationship between spontaneity and

Marks
4 the Gibbs Free Energy of a reaction, i.e. show that $\quad \Delta G_{\text {sys }}=\Delta H_{\text {sys }}-T \Delta S_{\text {sys }}<0$ for a spontaneous reaction.

Give an example of a chemical reaction or a chemical process that corresponds to each of the following.
$\Delta S>0, \Delta H>0, \Delta G<0$

$$
\Delta S>0, \Delta H<0, \Delta G<0
$$

\square
$\Delta S<0, \Delta H<0, \Delta G<0$

CHEM1901 - CHEMISTRY 1A (ADVANCED)
 CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Properties of matter
Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$0^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G

CHEM1901 - CHEMISTRY 1A (ADVANCED)

CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Standard Reduction Potentials, E°

Reaction	E° / V
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	+1.23
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd}(\mathrm{s})$	+0.92
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.15
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	$0(\mathrm{by}$ definition)
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.04
$\mathrm{~Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.24
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.74
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.76
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}(\mathrm{g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.83
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.36
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$	-2.71

CHEM1901 - CHEMISTRY 1A (ADVANCED)

CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Useful formulas

Quantum Chemistry

$E=h \nu=h c / \lambda$
$\lambda=h / m u$
$4.5 k_{\mathrm{B}} T=h c / \lambda$

Kinetics

$k=A \mathrm{e}^{-E \mathrm{a} / R T}$
$t_{1 / 2}=\ln 2 / k$
$\ln [\mathrm{A}]=\ln [\mathrm{A}]_{o}-k t$

Colligative properties
$\pi=\mathrm{cR} T$
$\mathrm{p}=k \mathrm{c}$
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m$
$\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m$

Electrochemistry
$\Delta G^{\circ}=-n F E^{\circ}$
Moles of $e^{-}=I t / F$
$E=E^{\circ}-(R T / n F) \times 2.303 \log Q$
$E^{\circ}=(R T / n F) \times 2.303 \log K$
$E=E^{\circ}-\frac{0.0592}{n} \log Q\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$

Gas Laws

$$
\begin{aligned}
& P V=n R T \\
& \left(P+n^{2} a / V^{2}\right)(V-n b)=n R T
\end{aligned}
$$

Radioactivity

$A=\lambda N$
$\ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t$
${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$

Acids and Bases

$\mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00$
$\mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\}$

Thermodynamics \& Equilibrium

$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
$\Delta G=\Delta G^{\circ}+R T \ln Q$
$\Delta G^{\circ}=-R T \ln K$
$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta \mathrm{n}}$

Polymers

$R_{\mathrm{g}}=\sqrt{\frac{n l_{0}^{2}}{6}}$

Mathematics

$\ln x=2.303 \log x$
If $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$

PERIODIC TABLE OF THE ELEMENTS

$\begin{aligned} & \text { O} \\ & \text { N} \\ & \text { N} \\ & \vdots \end{aligned}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	$\begin{gathered} 1 \\ \substack{\text { nupocex } \\ \mathbf{H} \\ \mathbf{H} \\ 1.008 \\ \hline} \end{gathered}$																	
	$\begin{gathered} \hline 3 \\ \text { Lunum } \\ \text { Li } \\ 6.941 \\ \hline \end{gathered}$	$\begin{gathered} \hline 4 \\ \hline \text { ппинuм } \\ \text { Be } \\ 9.012 \\ \hline \end{gathered}$											$\begin{gathered} \hline 5 \\ \hline \text { sonow } \\ \mathbf{B} \\ 10.81 \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ \begin{array}{c} 6 \\ \text { canow } \\ \text { C } \\ 12.01 \end{array} \end{gathered}$	$\begin{gathered} 7 \\ \substack{7 \\ \text { nrocese } \\ \mathrm{N} \\ 14.01 \\ \hline} \end{gathered}$	$\begin{gathered} 8 \\ \hline \text { oxcax } \\ \mathbf{O} \\ 16.00 \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ \hline \text { nuones } \\ \mathbf{F} \\ 19.00 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \text { now } \\ \text { Ne } \\ 20.18 \end{gathered}$
	$\begin{gathered} \hline 11 \\ \text { soonn } \\ \text { Na } \\ 22.99 \\ \hline \end{gathered}$												$\begin{array}{r} 13 \\ \text { sumun } \\ \text { Al } \\ \text { Al } \\ 26.98 \\ \hline \end{array}$	$\begin{gathered} 14 \\ \text { sulcoun } \\ \text { Si } \\ 28.09 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ \hline \text { putsespusus } \\ \mathbf{p} \\ 30.97 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ \hline \text { surur } \\ \text { S } \\ 32.07 \\ \hline \end{gathered}$		$\begin{gathered} 18 \\ \text { Aneov } \\ \text { Ar } \\ 39.95 \end{gathered}$
	$\begin{gathered} 19 \\ \substack{\text { porsusum } \\ \mathbf{K} \\ 39.10 \\ \hline \\ \hline} \end{gathered}$	$\begin{gathered} \hline 20 \\ \text { cuncun } \\ \text { Ca } \\ 40.08 \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 \\ \text { scenvonn } \\ \text { Sc } \\ 44.96 \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ \hline \text { minumen } \\ \mathbf{T i} \\ 47.88 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { vexumon } \\ \mathbf{V} \\ \mathbf{V} \\ 50.94 \\ \hline \end{array} \\ \hline \end{array}$	$\begin{gathered} \hline 24 \\ \begin{array}{c} \text { cheonem } \\ \text { Cr } \\ 52.00 \\ 5 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \hline 25 \\ \text { mancusse } \\ \text { Mn } \\ 54.94 \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ \text { mex } \\ \text { me } \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ \text { comarir } \\ \text { Co } \\ 58.93 \\ \hline \end{gathered}$	$\begin{array}{r} \hline \text { 28 } \\ \text { nexul } \\ \text { Ni } \\ 58.69 \\ \hline \end{array}$	$\begin{gathered} 29 \\ \text { comern } \\ \text { Cu } \\ 63.55 \\ \hline \end{gathered}$	$\begin{array}{r} 30 \\ \text { zuc } \\ \text { Zn } \\ 65.39 \\ \hline \end{array}$	$\begin{gathered} \hline 31 \\ \text { caulun } \\ \text { Ga } \\ 69.72 \\ \hline \end{gathered}$		$\begin{gathered} 33 \\ \text { Mesenc } \\ \text { As } \\ 74.92 \\ \hline \end{gathered}$	$\begin{gathered} \hline 34 \\ \hline \text { surumen } \\ \text { Se } \\ 78.96 \\ \hline \end{gathered}$	$\begin{gathered} \hline 35 \\ \hline \text { neomen } \\ \mathbf{B r} \\ 79.90 \\ \hline \end{gathered}$	$\begin{gathered} \hline 36 \\ \hline \text { kevrover } \\ \text { Kr } \\ 83.80 \\ \hline \end{gathered}$
		$\begin{gathered} \hline 38 \\ \substack{\text { stnownun } \\ \text { Sr } \\ 87.62 \\ 87 . \\ \hline} \end{gathered}$	$\begin{gathered} 39 \\ \text { nurum } \\ \mathbf{Y} \\ \mathbf{8 8 . 9 1} \end{gathered}$	$\begin{gathered} \hline 40 \\ \text { znconven } \\ \mathbf{Z r} \\ 91.22 \\ \hline \end{gathered}$	$\begin{gathered} \hline 41 \\ \text { Myounn } \\ \text { Nb } \\ 92.91 \\ \hline \end{gathered}$	$\begin{gathered} \hline 42 \\ \text { montruesum } \\ \text { Mo } \\ 95.94 \\ \hline \end{gathered}$			$\begin{gathered} \hline 45 \\ \hline \text { nutume } \\ \mathbf{R h} \\ 102.91 \\ \hline \end{gathered}$		$\begin{gathered} \hline 47 \\ \text { sunve } \\ \text { Ag } \\ 107.87 \\ \hline \end{gathered}$	$\begin{array}{r} \hline 48 \\ \text { canvun } \\ \text { Cd } \\ \text { C12.40 } \\ \hline \end{array}$	$\begin{gathered} \hline 49 \\ \text { noven } \\ \text { In } \\ 114.82 \\ \hline \end{gathered}$	$\begin{gathered} \hline 50 \\ \text { Tw } \\ \text { Sn } \\ 118.69 \\ \hline \end{gathered}$			$\begin{gathered} \hline 53 \\ \text { tomene } \\ \text { I } \\ 126.90 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 54 \\ \text { xexow } \\ \text { Xe } \\ \text { Xe } \\ \hline \end{array}$
	$\begin{gathered} 55 \\ \text { cassum } \\ \text { cs } \\ \text { Cs } \end{gathered}$	$\begin{gathered} 56 \\ \hline \text { nexum } \\ \text { Ba } \\ 137.34 \end{gathered}$	57-71	$\begin{gathered} 72 \\ \text { menwum } \\ \text { Hf } \\ 178.49 \\ \hline \end{gathered}$	73 тананим Ta 180.95	$\begin{gathered} \hline 74 \\ \substack{\text { nncsun. } \\ \mathbf{w} \\ \mathbf{W} \\ 183.85 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 75 \\ \hline \text { Rumwn } \\ \text { Re } \\ 186.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 76 \\ \text { oswum } \\ \text { Os } \\ \text { Os } \\ \hline \end{gathered}$	$\begin{gathered} \hline 77 \\ \hline \text { nemoun } \\ \text { II } \\ \text { I92.22 } \\ \hline \end{gathered}$	$\begin{gathered} \hline 78 \\ \substack{\text { numwn } \\ \mathbf{P t} \\ 195.09 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 79 \\ \text { coun } \\ \text { Au } \\ 196.97 \\ \hline \end{gathered}$	$\begin{gathered} \hline 80 \\ \text { mircury } \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{gathered} \hline 81 \\ \text { munum } \\ \text { TT } \\ 204.37 \end{gathered}$	$\begin{gathered} \hline 82 \\ \text { 炎 } \\ \mathbf{P b} \\ 207.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 83 \\ \text { mansur } \\ \mathbf{B i} \\ 208.98 \\ \hline \end{gathered}$	$\begin{gathered} 84 \\ \substack{80 \text { rownen } \\ \text { Po } \\ \text { P210.0] } \\ \hline} \end{gathered}$	$\begin{gathered} 85 \\ \begin{array}{c} \text { sranne } \\ \text { At } \\ \text { [210.0] } \end{array} \end{gathered}$	$\begin{array}{\|c} \hline 86 \\ \text { Renoon } \\ \mathbf{R n} \\ {[222.0]} \end{array}$
	$\begin{gathered} 87 \\ \text { rencum } \\ \text { Fr } \\ {[223.0]} \\ \hline \end{gathered}$	$\begin{gathered} 88 \\ \text { nenoun } \\ \mathbf{R a} \\ {[226.0]} \\ \hline \end{gathered}$	89-103	104 uruteranomun $\mathbf{R f}$ $[261]$	$\begin{gathered} 105 \\ \text { nousven } \\ \text { Db } \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 106 \\ \text { sexanoceren } \\ \text { Sg } \\ {[266]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 107 \\ \text { nonurum } \\ \text { Bh } \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 108 \\ \text { nussum } \\ \mathbf{H S} \\ {[265]} \\ \hline \end{gathered}$	$\begin{gathered} 109 \\ \begin{array}{c} \text { Mentrumum } \\ \mathbf{M y t} \\ {[266]} \\ \hline \end{array} \\ \hline \end{gathered}$									

