The University of Sydney

<u>CHEMISTRY 1A (ADVANCED) - CHEM1901</u> <u>CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) - CHEM1903</u>

CONFIDENTIAL

JUNE 2004

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a ●.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 14 and 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

		Marks
Pages	Max	Gained
2-11	34	

Snort answer section

	Marks			
Page	Max	Gaine	d	Marker
12	10			
13	8			
15	9			
16	6			
17	4			
18	6			
19	5			
20	4			
21	6			
22	4			
23	4			
Total	66			

• In the spaces provided, explain the meaning of the following terms. You may use an example, equation or diagram where appropriate.	Marks 10
(a) anti-bonding orbital	
(b) electron affinity	
(c) nuclear fission	
(d) electronegativity	
(d) electronegativity	
(e) VSEPR model	

• Balance the following nuclear reactions by identifying the missing nuclear particle or nuclide.

Marks 3

$${}^{36}_{17}Cl + {}^{0}_{-1}e \rightarrow$$

$${}^{236}_{92}U \rightarrow {}^{92}_{36}Kr + {}^{141}_{56}Ba + 3$$

$${}^{99}_{42}Mo \rightarrow {}^{0}_{-1}e +$$

3

• The half-life of plutonium-239 is 24110 years. How many years (to the nearest year) must pass after ²³⁹₉₄Pu is produced for the number of ²³⁹₉₄Pu atoms to decay to 0.01000 of the original number?

Answer:

• Provide a brief explanation of the process by which nuclear radiation causes biological damage.

2004

• Complete the following table.

Marks 6

Formula	Lewis structure	Molecular shape	Is the molecule <i>polar</i> or <i>non-polar</i> ?
e.g. H ₂ O	н О Н	bent (angular)	polar
CH₂O			
CH ₂ Cl ₂			
C ₂ Cl ₂			

• The lowest four energy levels of the He⁺ ion are given.

Principal quantum number (n)	Energy (J)
1	-8.720×10^{-18}
2	-2.180×10^{-18}
3	-0.969×10^{-18}
4	-0.545×10^{-18}

An electronic transition is identified by specifying the value of n of the initial state and the value of n of the final state. Identify the electronic transition responsible for the emission of radiation from He⁺ with a wavelength of 121.5 nm?

• Nitrogen gas constitutes about 78% of the Earth's atmosphere.

Marks 4

Complete the MO diagram for the valence electrons for the ground state electronic configuration of the nitrogen molecule by inserting the appropriate number of electrons into the appropriate orbitals.

Is N₂ paramagnetic or diamagnetic? Explain your answer.

The N_2^- anion can be generated as a transient species in an electrical discharge. What is the bond order of this molecular ion?

• Why is the H₂ molecule lower in energy than two isolated H atoms?

When 156 g of aluminium metal at 50.0 °C is added to 100 g of water at 20.0 °C, the final temperature becomes 30.0 °C. The heat capacity of water is 4.18 J K ⁻¹ g ⁻¹ . Calculate the specific heat capacity of aluminium.			
	Answer:		
	have been if the 156 g of aluminium metal at 50 °C aining 10 g ice and 90 g water at 0 °C?	С	

Explain the following features of the lead acid storage battery.	Marks 3
It has a relatively constant voltage.	
It needs no salt bridge.	
It can be recharged.	
• Explain why aluminium metal cannot be produced by the electrolysis of aqueous solutions of aluminium salts. Explain why aluminium is produced by the electrolysis of a molten mixture of Al ₂ O ₃ and Na ₃ AlF ₆ rather than by the electrolysis of molten Al ₂ O ₃ alone.	3

•	RDX ($C_3H_6N_6O_6$) is a powerful explosive. Wr describe the complete combustion of RDX to g			Marks 5
	How does the equation for the explosive decomequation?	nposition of RDX	differ from the above	
	What properties of RDX make it a good explos	ive?		
	How much heat is liberated from the complete	combustion of 10	0 g of RDX?	
	Compound ΔH	$I_{\rm f}^{\circ} ({\rm kJ \ mol}^{-1})$		
	$H_2O(1)$	-286		
	CO ₂ (g)	-394		
	RDX(s)	+65		
	Ans	wer:		
	Is the explosive decomposition of RDX likely t (<i>i.e.</i> Is $\Delta S > 0$?) Give reasons for your answer.	o be entropically	favourable?	

• Aluminium metal is a very effective agent for reducing oxides to their elements. For example, it is used as a component of the solid fuel in the space shuttle, and in the thermite reaction shown in lectures:

Marks 4

$$Fe_2O_3(s) + 2Al(s) \rightarrow Al_2O_3(s) + 2Fe(s)$$

Write a balanced equation for the reduction of $SiO_2(s)$ to silicon by Al(s).

2000-J-9

Given the following thermochemical data, evaluate the enthalpy change per gram of reactants for the SiO_2 and Fe_2O_3 reactions above.

Compound	$\Delta H_{\rm f}^{\circ}$ (kJ mol ⁻¹)
Fe_2O_3	-821
Al_2O_3	-1668
SiO_2	-877

Answer (SiO ₂):	Answer (Fe ₂ O ₃):

Which set of reactants would make the better rocket fuel on the basis of most energy provided per mass of fuel (*i.e.* biggest "bounce per ounce")?

•	Consider a solution that is 1 M in both H ⁺ Use the standard reduction potentials on the unstable under these conditions.	and Fe ²⁺ ions under 1 atm of oxygen gas. he data sheet to show that Fe ²⁺ ions are	Marks 6
	Why can such solutions be preserved by the	he addition of iron metal?	
	or negative?	ΔG , for the following reaction be positive Φ	
	Calculate the reduction potential of a half-immersed in a 2.0 M Fe ²⁺ and 0.20 M Fe ³		
		Answer:	

	CHEM1901/1903	2000-J-11	2004	22/08(a)
--	---------------	-----------	------	----------

• A saturated solution of iodine in water contains 0.330 g I ₂ per litre, but more than th amount can dissolve in a potassium iodide solution because of the following equilibrium.	Marks 4
$I^{-}(aq) + I_2(aq) \longrightarrow I_3^{-}(aq)$	
A 0.100 M KI solution dissolves 12.5 g of I_2 per litre, most of which is converted to I_3^- (aq). Assuming that the concentration of I_2 (aq) in all saturated solutions is the same, calculate the equilibrium constant for the above reaction.	
Answer:	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks 4

•	State the Second Law of Thermodynamics and give an equation to express this Law mathematically. Use this equation to derive the relationship between spontaneity and the Gibbs Free Energy of a reaction, <i>i.e.</i> show that $\Delta G_{\rm sys} = \Delta H_{\rm sys} - T\Delta S_{\rm sys} < 0$ for a spontaneous reaction.
	Give an example of a chemical reaction or a chemical process that corresponds to each of the following.
	$\Delta S > 0, \Delta H > 0, \Delta G < 0$
	$\Delta S > 0, \Delta H < 0, \Delta G < 0$
	$\Delta S < 0, \Delta H < 0, \Delta G < 0$

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \,\mathrm{J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 L atm K^{-1} mol^{-1}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and $0 \, ^{\circ}\text{C} = 22.4 \, \text{L}$

Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

$$1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa}$$

$$0 \, ^{\circ}\text{C} = 273 \, \text{K}$$

$$1 L = 10^{-3} \text{ m}^3$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

D	ecimal fr	actions	Deci	Decimal multiples						
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol					
10^{-3}	milli	m	10^3	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	M					
10^{-9}	nano	n	10 ⁹	giga	G					
10^{-12}	pico	p								

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Standard Reduction Potentials, E°

Sianaara Reduction I otenti	•
Reaction	<i>E</i> ° / V
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}(\operatorname{s})$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.74
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76
$2H_2O~+~2e^- \rightarrow~H_2(g)~+~2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.36
$Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-2.71

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Useful formulas

Quantum Chemistry

 $E = hv = hc/\lambda$

 $\lambda = h/mu$

 $4.5k_{\rm B}T = hc/\lambda$

Gas Laws

PV = nRT

 $(P + n^2 a/V^2)(V - nb) = nRT$

Kinetics

 $k = Ae^{-Ea/RT}$

 $t_{1/2} = \ln 2/k$

 $ln[A] = ln[A]_o - kt$

Radioactivity

 $A = \lambda N$

 $ln(N_0/N_t) = \lambda t$

 14 C age = $8033 \ln(A_0/A_t)$

Colligative properties

 $\pi = cRT$

p = kc

 $\Delta T_{\rm f} = K_{\rm f} m$

 $\Delta T_{\rm b} = K_{\rm b} m$

Acids and Bases

 $pK_{w} = pH + pOH = 14.00$

 $pK_w = pK_a + pK_b = 14.00$

 $pH = pK_a + log\{[A^-] / [HA]\}$

Electrochemistry

 $\Delta G^{\circ} = -nFE^{\circ}$

 $Moles\ of\ e^- = It/F$

 $E = E^{\circ} - (RT/nF) \times 2.303 \log Q$

 $E^{\circ} = (RT/nF) \times 2.303 \log K$

 $E = E^{\circ} - \frac{0.0592}{n} \log Q$ (at 25 °C)

Thermodynamics & Equilibrium

 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

 $\Delta G = \Delta G^{\circ} + RT \ln Q$

 $\Delta G^{\circ} = -RT \ln K$

 $K_{\rm p} = K_{\rm c} (RT)^{\Delta \rm n}$

Polymers

$$R_{\rm g} = \sqrt{\frac{nl_0^2}{6}}$$

Mathematics

 $\ln x = 2.303 \log x$

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen																	2 HELIUM
H 1.008																	He 4.003
3	4											5	6	7	8	9	10
Lithium	Beryllium Be											BORON B	CARBON	NITROGEN	OXYGEN	FLUORINE F	Neon Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Magnesium Mg											ALUMINIUM	Silicon	PHOSPHORUS P	SULFUR	Cl	Argon Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM K	Calcium	SCANDIUM Sc	Titanium Ti	VANADIUM V	CHROMIUM	MANGANESE	Fe	Co	NICKEL Ni	Cu	Znc Zn	Gallium	GERMANIUM	ARSENIC	SELENIUM Se	Bromine Br	KRYPTON Kr
39.10	40.08	44.96	47.88	V 50.94	52.00	Mn 54.94	55.85	58.93	58.69	63.55	65.39	Ga 69.72	72.59	As 74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	$\mathbf{A}\mathbf{g}$	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55 CAESIUM	56 BARIUM	57-71	72 HAFNIUM	73 TANTALUM	74 TUNGSTEN	75 RHENIUM	76 OSMIUM	77 IRIDIUM	78 PLATINUM	79	80 mercury	81 THALLIUM	82 LEAD	83 візмитн	84 POLONIUM	85 astatine	86 RADON
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103	104	105	106	107	108	109						·			
Francium Fr	RADIUM		RUTHERFORDIUM Rf	Db Db	SEABORGIUM Sg	Bh	HASSIUM HS	MEITNERIUM Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
[220.0]	[==0.0]	1	[=0+]	[===]	[=00]	[=~=]	[=00]	[=00]									

LANTHANIDES

ACTINIDES

ES	57 LANTHANUM	58 CERIUM	59 PRASEODYMIUM	60 NEODYMIUM	61 PROMETHIUM	62 Samarium	63 EUROPIUM	64 gadolinium	65 TERBIUM	66 Dysprosium	67 HOLMIUM	68 ERBIUM	69 THULIUM	70 YTTERBIUM	71
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
ļ	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
3	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELLIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]