Chemistry 1B Adv/SSP (CHEM1902/1904) November 2004

2004-N-2

- Ionisation energies increase across a period in the periodic table because the increasing nuclear charge holds the electrons more tightly. Hence, in any period, the Group I element is the one that most easily loses its electron (from the *s* subshell). This electron is then available to reduce another species.
- $1.16 \times 10^{-5} \text{ s}^{-1}$ 4.1%

2004-N-3

$$\bullet 1 \times 10^{-18} \,\mathrm{M}$$

$$pH = 8.9$$

• II 4 8
$$K^{+}(aq)$$
, $[Ni(CN)_{4}]^{2-}(aq)$
III 6 3 $[Cr(NH_{3})_{5}Cl]^{2+}(aq)$, $Cl^{-}(aq)$
III 6 6 [Co(en)₃]³⁺(aq), $Br^{-}(aq)$

2004-N-4

• Hydroxyapatite dissolves according to the equation:

This equilibrium lies far to the left, but the added of H^+ (acidic medium) will react with the OH^- (aq) and push the reaction to the right (Le Chatelier's principle). Fluoridation of water promotes the replacement of OH with F to form $Ca_5(PO_4)_3F(s)$. This compound is much less water soluble than $Ca_5(PO_4)_3OH$ and as F^- is a weaker base than OH^- , the corresponding reaction

$$Ca_{5}(PO_{4})_{3}F(s) \quad \Longrightarrow \quad 5Ca^{2+}(aq) \ + 3PO_{4}{}^{3-}(aq) \ + \ F^{-}(aq)$$

is less affected by the addition of H⁺. Less soluble enamel means less tooth decay.

2004-N-5

- 1.99
 - 8.23
 - 3.27
 - HNO_2

•

CH₃CH₂CH₂—O—CH₂CH₃

$$\begin{matrix} O \\ \parallel \\ CH_3CH_2C-NHCH_3 \end{matrix} \quad \begin{matrix} \oplus \\ + \end{matrix} \quad \begin{matrix} \ominus \\ CH_3NH_3 \end{matrix} \quad Cl$$

2004-N-7

• $-CH_2CHO$ $-CH_2CH=CHCH_3$ $-CH_3$ -H (4S,6Z)-4-methyloct-6-en-2-one

The reduction indtroduces a second stereogenic centre into the molecule. The two products are diastereoisomers (not eneantiomers) and hence have different chemical and physical properties and can be separated

$$\begin{array}{c} O \\ b \\ C \end{array}$$

3

Relative intensities a:b:c = 3:1:6	a	singlet (1 line)	doublet (2 lines)
b septet (7 lines)			
			0 ppm

•

$$\begin{array}{c|c}
O & O & H \\
C & C & N \\
C & H \\
O & O \\
n
\end{array}$$

•

OH
$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$