2005-N-2

- $\quad 6.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
$9.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
increase
no change
decrease
increase
- potassium tetracyanoplatinate(II)
hexaaquacobalt(II) chloride
2005-N-3
- $\quad \mathrm{pH}=8.9$
$8.4 \times 10^{-6} \mathrm{M}$
0.21 mol

2005-N-4

- A: hydrogen bonding, dipole-dipole forces, London dispersion forces

B: London dispersion forces
All amino acids can undergo an acid-base reaction with themselves. Leucine gives the structure on the right.
Being composed of positive and negative charges, the dominant intermolecular force in the crystal is ionic bonding. Hence the abnormally high melting point for a low molecular weight organic compound.

- electron transport

Pt
Forms octahedral complex which can bind molecular O_{2}.

1-bromo-1-methylcyclohexane

2005-N-7

Relative intensities a:b:c:d = 6:1:3:2

constitutional isomers

1) IR spectrometry: \mathbf{Y} has strong carbonyl absorption at about $1700 \mathrm{~cm}^{-1} . \mathbf{Z}$ does not.
2) \mathbf{Z} has 5 signals in ${ }^{1} \mathrm{H}$ NMR spectrum, \mathbf{Y} has 4 signals in ${ }^{1} \mathrm{H}$ NMR spectrum.
3) \mathbf{Z} has 6 signals in ${ }^{13} \mathrm{C}$ NMR spectrum, \mathbf{Y} has 5 signals in ${ }^{13} \mathrm{C}$ NMR spectrum.
4) fragmentation pattern in mass spectrum

2005-N-9

1. $\mathrm{CH}_{2} \mathrm{O}$
2. $\mathrm{H}^{\oplus} / \mathrm{H}_{2} \mathrm{O}$

3. CO_{2}
4. $\mathrm{H}^{\oplus} / \mathrm{H}_{2} \mathrm{O}$

> 1. LiAlH_{4} 2. $\mathrm{H}^{\oplus} / \mathrm{H}_{2} \mathrm{O}$

$\overline{=}$

