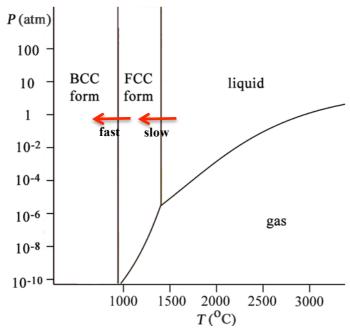
CHEMISTRY 1B (CHEM1902/1904) - November 2014

NB These answers have not been checked

2014-N-2

• BN


+III (or +3)

The B-N bonds are partially ionic. Also, a protective layer of B₂O₃ forms on the surface.

2014-N-3

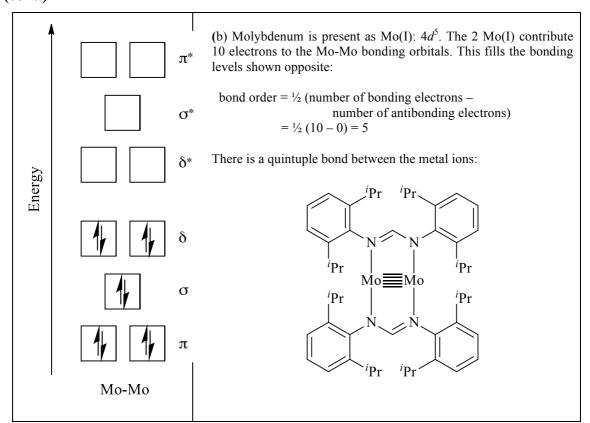
• BCC form

See below

Fast cooling to room temperature does not allow the atoms to re-arrange; they are stuck in the FCC form as considerable re-arrangement is needed to turn this in the BCC form.

The line between BCC and FCC has a negative slope (\). If the system is on the line and the pressure is increased, the system moves into the FCC region.

2014-N-4


• bis(aminidato)dimolybdenum(I)

See overleaf.

Bonding electrons have been removed: the bond order drops to 4 and the weaker bond is longer.

There will be 2 unpaired electrons.

2014-N-4 (cont.)

2014-N-5

• 4.73

11.64

650 mL of solution A and 350 mL of solution B

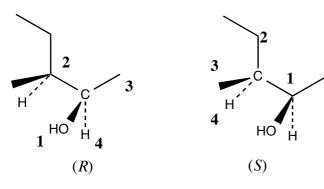
2014-N-6

•
$$CaC_2O_4 \cdot H_2O(s) \Rightarrow Ca^{2+}(aq) + C_2O_4^{2-}(aq) + H_2O(l)$$
 $K_{sp} = [Ca^{2+}(aq)][C_2O_4^{2-}(aq)]$
 $4.8 \times 10^{-5} \text{ mol L}^{-1}$
No effect
 $3.0 \times 10^{-8} \text{ M}$

2014-N-7

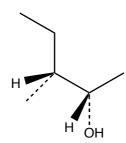
• rate =
$$k[HI]^2$$

4.0 × 10⁻² mol⁻¹ L s⁻¹

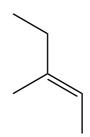

2014-N-8

propionic acid methyl propionate $\mathbf{F} = \mathbf{CH_3OH} \quad \mathbf{H} = \mathbf{J} = \mathbf{J}$

2014-N-8 (cont.)


2014-N-9

•



(*Z*)-3-methylpent-2-ene

Enantiomer of **A**:

Diastereoisomers of **B**:

2014-N-10

• C is the less substituted alkene and, according to Zeirsev's rule, this is not favoured because it is less stable.

2014-N-11

• (i) Cyclic and planar, (ii) each atom in the ring must have be sp^2 hybridised so that it has a p-orbital perpendicular to the ring and (iii) the π system must have 4n+2 electrons where n is any integer.

The lone pair on N in pyridine is in an sp^2 hybrid, pointing out from the molecule and lying in the plane. It is not involved in the π system and is free to attach a proton. The N atom in pyrrole uses its 'lone pair' in the π system to add to the 4 e from the carbon atoms to give an aromatic electron count of 6. The 'lone pair' is in a *p*-orbital and is part of the π bonding. It is not available to attach a proton.

Loss of a proton from C_5H_6 leads to C_5H_5 . The 'lone pair' on the negatively charged C atom contributes to a total π electron count of 6 and the anion is aromatic and stabilised. This is not possible for cyclopentene.

2014-N-12

• See below.

Substitution, Elimination, Aromatic

nucleophile: C=C in step (i). Br- in step (ii)

electrophile: Br₂ in step (i). Carbocation in step (ii).

FeBr₃ is a catalyst. Br₂ attaches weakly to it causing the non-polar Br-Br bond to become polarised with a partial positive charge on one end. This makes it more electrophilic.

$$\begin{array}{c} & & & \\ & &$$

2014-N-13

• See below.

Conjugate base of S	Conjugate base of T	Conjugate base of U	Conjugate base of V
00	F © O		000

T will be a stronger acid. The conjugate base of T is more stable than that of S as the electronegative fluorine atoms will withdraw electron density from the negatively charged O atom.

U dars a stronger acid than V because the conjugate base is more stable. Both are stabilised by resonance which acts to delocalise the negative charge over the electronegative O atoms present but the conjugate base of U has the charge delocalised over 3 O atoms rather than 2 O atoms.