CHEM1902 - CHEMISTRY 1B (ADVANCED)

and

CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM)
 SECOND SEMESTER EXAMINATION
 CONFIDENTIAL

NOVEMBER 2004
TIME ALLOWED: THREE HOURS
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME		SID	
OTHER		TABBER	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages $16,18,22$ \& 24 are for rough working only.

OFFICIAL USE ONLY
Multiple choice section

Short answer section

Page	Marks			Marker
	Max	Gained		
13	5			
14	10			
15	2			
17	8			
19	6			
20	6			
21	7			
23	6			
Total	50			

- Explain in terms of their electronic configurations and ionisation energies why the alkali metals (Group 1) are powerful reducing agents.
\qquad
- The half-life for the first order decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ is $6.00 \times 10^{4} \mathrm{~s}$ at $20^{\circ} \mathrm{C}$. Calculate the rate constant, k, at this temperature.

What percentage of the $\mathrm{N}_{2} \mathrm{O}_{5}$ molecules will have reacted after one hour?

- The solubility product constant of $\mathrm{Fe}(\mathrm{OH})_{3}$ is $1 \times 10^{-39} \mathrm{M}^{4}$. What is the concentration of $\mathrm{Fe}^{3+}(\mathrm{aq})$ in equilibrium with $\mathrm{Fe}(\mathrm{OH})_{3}$ at pH 7.0 ?
\square
ANSWER:
To what value does the pH need to be increased to decrease the concentration of $\mathrm{Fe}^{3+}(\mathrm{aq})$ to a single $\mathrm{Fe}^{3+}(\mathrm{aq})$ ion per litre of solution?

ANSWER:

- Complete the following table.

Formula	Oxidation state of transition metal	Coordination number of transition metal	Number of d-electrons in metal in complex ion	Species formed upon dissolving in water
$\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$				
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{2}\right] \mathrm{Cl}_{2}$				
$\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Br}_{3}$				

en = ethylenediamine $=\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$

- Teeth are made from hydroxyapatite, $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}$. Why does an acidic medium promote tooth decay and how can the decay be stopped using fluoridation of drinking water? Use chemical equations where appropriate.
- Solution A consists of a 0.15 M aqueous solution of nitrous acid $\left(\mathrm{HNO}_{2}\right)$ at $25^{\circ} \mathrm{C}$.
\square
At $25^{\circ} \mathrm{C}, 1.00 \mathrm{~L}$ of Solution B consists of 13.8 g of sodium nitrite $\left(\mathrm{NaNO}_{2}\right)$ dissolved in water. Calculate the pH of Solution B.

ANSWER:

Solution B $(1.00 \mathrm{~L})$ is poured into Solution A $(1.00 \mathrm{~L})$ and allowed to equilibrate at $25^{\circ} \mathrm{C}$. Calculate the pH of the final solution.

- Draw the constitutional formula(s) of the major organic product(s) formed in each of the following reactions.

- Compound \mathbf{X} was isolated as a derivative of a natural product.

Carbon 4 of \mathbf{X} is a stereogenic centre. List the substituents attached to $\mathbf{C} 4$ in descending order of priority according to the sequence rules.
highest priority
lowest priority

What is the systematic name for compound \mathbf{X} ? Make sure you include all relevant stereochemical descriptors.
\square
Reduction of \mathbf{X} with sodium borohydride $\left(\mathrm{NaBH}_{4}\right)$ followed by quenching the reaction with dilute acid gives \mathbf{Y}. Give the constitutional formula for \mathbf{Y}.

Product \mathbf{Y} can be separated into two isomers. Explain.

- Compound \mathbf{Z} can readily be identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

How many signals would you expect to see in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound \mathbf{Z} ?

Write the letters $\mathbf{a}, \mathbf{b}, \mathbf{c}$, etc on the diagram of compound \mathbf{Z} to identify each unique hydrogen environment giving rise to a signal in the ${ }^{1} \mathrm{H}$ NMR spectrum.

Sketch the ${ }^{1} H$ NMR spectrum for compound \mathbf{Z}. Label each signal in the spectrum with $\mathbf{a}, \mathbf{b}, \mathbf{c}$, etc to correspond with your assignments on the diagram of \mathbf{Z} above. Make sure you show the relative number of hydrogens and the splitting pattern (number of fine lines) you would expect to see for each signal.

- Complete the three step mechanism for the reaction given below. Draw intermediate structures, curly arrows and partial charges as appropriate to illustrate the bonding changes that take place.
(
- Draw the repeating unit of the polymer formed in the following reactions.
Cles)
- Show clearly the reagents you would use to carry out the following chemical conversion.

Draw constitutional formulas for any intermediate compounds.
NOTE: More than one step is necessary.

CHEM1902 - CHEMISTRY 1B (ADVANCED)

CHEM1904 - CHEMISTRY 1B (SSP)

DATA SHEET

Physical constants

Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple Prefix Symbol
10^{3} kilo k
10^{6} mega M
10^{9} giga G

CHEM1902 - CHEMISTRY 1B (ADVANCED)
 CHEM1904 - CHEMISTRY 1B (SSP)

Standard Reduction Potentials, E°	
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$	+1.72
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	+1.23
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd}(\mathrm{s})$	+0.92
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.15
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	0 (by definition)
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.04
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.24
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.74
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.76
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.83
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.36
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$	-2.71

CHEM1902 - CHEMISTRY 1B (ADVANCED)
 CHEM1904 - CHEMISTRY 1B (SSP)

Useful Formulas

Quantum Chemistry

$E=h \nu=h c / \lambda$
$\lambda=h / m u$
$4.5 k_{\mathrm{B}} T=h c / \lambda$
$E=Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right)$

Kinetics

$k=A \mathrm{e}^{-E \mathrm{a} / R T}$
$t_{1 / 2}=\ln 2 / k$
$\ln [\mathrm{A}]=\ln [\mathrm{A}]_{\mathrm{o}}-k t$

Gas Laws

$$
\begin{aligned}
& P V=n R T \\
& \left(P+n^{2} a / V^{2}\right)(V-n b)=n R T
\end{aligned}
$$

Colligative Properties

$\pi=\mathrm{cR} T$
$\mathrm{p}=k \mathrm{c}$
$P_{\text {solution }}=X_{\text {solvent }} \times P_{\text {solvent }}^{\circ}$
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m$
$\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m$

Thermodynamics \& Equilibrium

$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
$\Delta G=\Delta G^{\circ}+R T \ln Q$
$\Delta G^{\circ}=-R T \ln K$
$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$

Radioactivity

$A=\lambda N$
$\ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t$
${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$

Acids and Bases

$\mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00$
$\mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\}$

Electrochemistry

$\Delta G^{\circ}=-n F E^{\circ}$
Moles of $e^{-}=I t / F$

$$
\begin{aligned}
E & =E^{\circ}-(R T / n F) \ln Q \\
& =E^{\circ}-(R T / n F) \times 2.303 \log Q \\
E^{\circ} & =(R T / n F) \ln K \\
& =(R T / n F) \times 2.303 \log K \\
E & =E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Mathematics

If $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$\ln x=2.303 \log x$

PERIODIC TABLE OF THE ELEMENTS

$\begin{gathered} 1 \\ \substack{1 \\ \text { monocere } \\ \mathbf{H} \\ 1.008 \\ \hline} \end{gathered}$																	$\begin{gathered} 2 \\ \begin{array}{c} \text { wave } \\ \text { He } \\ 4.003 \end{array} \end{gathered}$
	$\begin{gathered} \hline 4 \\ \hline \text { wernuwn } \\ \text { Be } \\ 9.012 \\ \hline \end{gathered}$											$\begin{gathered} 5 \\ \hline \text { sonow } \\ \mathbf{B} \\ \mathbf{B} \\ 10.81 \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ \begin{array}{c} 6 \\ \text { canow } \\ \text { C } \\ 12.01 \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ~ \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ \substack{7 \\ \text { Nroces } \\ \mathrm{N} \\ 14.01 \\ \hline} \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ \hline \text { oxaxer } \\ \mathbf{O} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \hline \text { muenes } \\ \mathbf{F} \\ 19.00 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \text { neov } \\ \text { Ne } \\ 20.18 \\ \hline \end{gathered}$
$\begin{gathered} 111 \\ \text { soovn } \\ \text { Na. } \\ 22.99 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ \hline \text { macessum } \\ \mathbf{M g} \\ 24.31 \\ \hline \end{gathered}$											$\begin{array}{r} 13 \\ \text { sumunum } \\ \text { Al } \\ \text { A6.98 } \\ \hline \end{array}$	$\begin{gathered} 14 \\ \hline \text { sulucon } \\ \text { Si } \\ 28.09 \\ \hline \end{gathered}$	$\begin{gathered} \hline 15 \\ \text { pucsurnous } \\ \mathbf{p} \\ 30.97 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ \text { surur } \\ \text { s. } \\ 32.07 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ \hline \text { curones } \\ \text { Cl } \\ 35.45 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ \text { ancor } \\ \text { Ar } \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \hline \text { monssum } \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} \hline 20 \\ \text { cancum } \\ \text { Ca } \\ 40.08 \end{gathered}$	$\begin{gathered} \hline 21 \\ \substack{\text { scuncum } \\ \text { Sc } \\ 44.96 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 22 \\ \hline \text { manven } \\ \text { Ti. } \\ 47.88 \end{gathered}$	$\begin{gathered} \hline \text { 23 } \\ \substack{\text { vexwoum } \\ \text { V } \\ 50.94} \end{gathered}$	$\begin{gathered} \hline 24 \\ \hline \begin{array}{c} \text { cheomum } \\ \text { Cr } \\ \text { Cr. } \end{array} \\ 52.00 \end{gathered}$	25 mancusse Mnn 54.94	$\begin{gathered} \hline 26 \\ \text { mox } \\ \text { Fe } \\ 55.85 \end{gathered}$	$\begin{gathered} \hline 27 \\ \text { comur } \\ \text { Co } \\ 58.93 \end{gathered}$	$\begin{gathered} \hline 28 \\ \hline \text { Nexat } \\ \text { Ni } \\ 58.69 \end{gathered}$	$\begin{gathered} 29 \\ \text { coprer } \\ \text { Cu } \\ 63.55 \end{gathered}$	$\begin{gathered} \hline 30 \\ \text { zanc } \\ \text { Zn } \\ 65.39 \end{gathered}$	$\begin{gathered} \hline 31 \\ \text { cunum } \\ \text { Ga. } \\ 69.72 \end{gathered}$		$\begin{gathered} \hline 33 \\ \hline \text { anserc } \\ \text { Ass } \\ \text { 74.92 } \end{gathered}$	$\begin{gathered} \hline 34 \\ \hline \text { sutwn } \\ \text { Se } \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \hline \text { newnen } \\ \text { Br } \\ \text { (9.90 } \end{gathered}$	$\begin{gathered} 36 \\ \substack{\text { kevrow } \\ \mathbf{K r} \\ 83.80} \end{gathered}$
$\begin{gathered} 37 \\ \hline \text { Rusumum } \\ \text { Rb } \\ \text { R5.47 } \end{gathered}$	$\begin{gathered} 38 \\ \text { sumerum } \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \text { rumum } \\ \mathbf{Y} \\ 88.91 \end{gathered}$		$\begin{aligned} & \hline 41 \\ & \text { Movenn } \\ & \text { Nb } \\ & \text { N2.91 } \\ & \hline \end{aligned}$	$\begin{gathered} 42 \\ \text { мon wesum } \\ \text { Mo } \\ 95.94 \\ \hline \end{gathered}$	$\begin{gathered} 43 \\ \text { čenerum } \\ \text { Tc } \\ \text { T98.91] } \\ \hline \end{gathered}$	$\begin{gathered} \text { M4 } \\ \text { numunn } \\ \text { Ruu } \\ 101.07 \end{gathered}$	$\begin{gathered} \hline \text { 45 } \\ \text { Repown } \\ \mathbf{R h} \\ 102.91 \\ \hline \end{gathered}$	$\begin{gathered} \hline 46 \\ \text { renurum } \\ \text { Pd } \\ 106.4 \\ \hline \end{gathered}$	$\begin{gathered} 47 \\ \hline \text { sunger } \\ \text { Ag } \\ 107.87 \end{gathered}$	$\begin{gathered} 48 \\ \begin{array}{c} 48 \times u m \\ \text { Cd } \\ \text { Cd } \\ 112.40 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 49 \\ \text { 40wn } \\ \text { In } \\ \text { Int.82 } \end{gathered}$	$\begin{gathered} 50 \\ \text { nw } \\ \text { Sn } \\ 118.69 \end{gathered}$	$\begin{gathered} 51 \\ \text { Numan } \\ \text { Sb } \\ \text { 121.75 } \end{gathered}$	$\begin{gathered} 52 \\ \hline \text { muxum } \\ \text { Te } \\ 127.60 \\ \hline \end{gathered}$	53 conese I 126.90	$\begin{array}{\|c} \hline 54 \\ \text { xexow } \\ \text { Xe } \\ 131.30 \\ \hline \end{array}$
$\begin{gathered} 55 \\ \hline \text { casun } \\ \text { cascon } \\ \text { Cs } \\ 132.91 \end{gathered}$	$\begin{gathered} \hline 56 \\ \hline \text { sanum } \\ \text { Ba } \\ 137.34 \end{gathered}$	57－71	$\begin{gathered} \hline 72 \\ \hline \text { newnen } \\ \text { nff } \\ 178.49 \end{gathered}$	$\begin{gathered} \hline 73 \\ \text { raveun } \\ \text { Ta } \\ 180.95 \end{gathered}$	$\begin{gathered} \hline 74 \\ \substack{7 \text { nessex } \\ \mathbf{W} \\ 183.85} \end{gathered}$	$\begin{gathered} \hline 75 \\ \text { Rewnen } \\ \text { Re } \\ 186.2 \end{gathered}$	$\begin{gathered} \hline 76 \\ \hline \text { osmun } \\ \text { Os } \\ 190.2 \end{gathered}$	$\begin{gathered} \hline 77 \\ \text { nemum } \\ \text { nIr } \\ 192.22 \end{gathered}$	$\begin{gathered} \hline 78 \\ \substack{\text { numpun } \\ \text { Pt } \\ 195.09} \end{gathered}$	$\begin{gathered} \hline 79 \\ \text { coun } \\ \text { Au. } \\ 196.97 \end{gathered}$	$\begin{gathered} \hline 80 \\ \text { mencur } \\ \mathbf{H g} \\ \text { 200.59 } \end{gathered}$	$\begin{gathered} \hline 81 \\ \begin{array}{c} \text { rualum } \\ \text { Tl } \\ \text { 204.37 } \end{array} \end{gathered}$		$\begin{gathered} \hline 83 \\ \hline \text { mswrum } \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \substack{80 \text { mownu } \\ \text { poun } \\ \text { P210.0] }} \end{gathered}$	$\begin{gathered} 85 \\ \hline \text { sranus } \\ \text { At } \\ {[210.0]} \end{gathered}$	$\begin{gathered} 86 \\ \hline \text { nanove } \\ \text { Rñ } \\ \text { [222.0] } \end{gathered}$
$\begin{gathered} 87 \\ \begin{array}{c} 87 \text { navern } \\ \text { mer } \\ {[223.0]} \end{array} \end{gathered}$	$\begin{gathered} 88 \\ \text { 8enum } \\ \text { Ra } \\ \text { [226.0] } \\ \hline \end{gathered}$	89－103	$\begin{gathered} 104 \\ \text { vunuropent } \\ \text { Rf } \\ {[261]} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 105 \\ & \text { nownum } \\ & \text { Dub } \\ & {[262]} \end{aligned}$		$\begin{aligned} & 107 \\ & \text { nonumum } \\ & \text { Bh } \\ & \text { [262] } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 108 \\ & \text { nussum } \\ & \text { Hs } \\ & {[265]} \\ & \hline \end{aligned}$	$\begin{gathered} 109 \\ \text { мensurumum } \\ \text { Mt } \\ {[266]} \\ \hline \end{gathered}$									

	57		59	$\underset{\text { nsonxame }}{60}$	61	$\underset{\text { suncrum }}{62}$	${ }_{\text {cuen }}^{63}$	$\underset{\text { canounum }}{64}$	${ }_{\text {\％}}^{\text {тиаим }}$	$\underset{\text { oxsmostum }}{66}$	${ }_{\text {nowuma }}^{67}$		¢ 69	70	71
	$\underset{138.91}{\substack{\text { Lanam }}}$	$\begin{gathered} \mathbf{C e r e w} \\ 140.12 \end{gathered}$	$\begin{gathered} \text { Pr } \\ 140.91 \end{gathered}$	$\begin{gathered} \text { Nownan } \\ 144.24 \end{gathered}$		$\begin{gathered} \text { Sm } \\ 150.4 \end{gathered}$	$\begin{gathered} \text { Eu } \\ 151.96 \end{gathered}$	$\begin{gathered} \mathbf{G d} \\ \text { Gd.25 } \end{gathered}$	$\underset{158.93}{\substack{\text { Tb }}}$	$\begin{gathered} \text { Dy } \\ 162.50 \end{gathered}$	$\underset{164.93}{\substack{\text { Ho }}}$	$\begin{gathered} \text { Er } \\ \mathbf{1 6 7 . 2 6} \end{gathered}$	$\begin{gathered} \mathbf{T m} \\ 168.93 \end{gathered}$	$\underset{173.04}{\mathbf{Y b}}$	$\begin{gathered} \text { Lu } \\ 174.97 \end{gathered}$
Actinides	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	$\underset{[227.0]}{\mathbf{A c}}$	$\underset{232.04}{\text { Th }}$	$\begin{gathered} \text { Pa } \\ {[231.0]} \end{gathered}$	$\underset{238.03}{\mathbf{U}}$	$\underset{[237.0]}{\mathbf{N p}}$	$\underset{[239.1]}{\mathbf{P u}}$	$\underset{[243.1]}{\text { Am }}$	$\underset{[247.1]}{\text { Cm }}$	$\begin{gathered} \text { Bk } \\ {[247.1]} \end{gathered}$	$\begin{gathered} \text { Cf } \\ {[252.1]} \end{gathered}$	$\begin{gathered} \text { Es } \\ {[252.1]} \end{gathered}$	$\underset{[257.1]}{\text { Fm }}$	$\underset{[256.1]}{\text { Md }}$	$\begin{gathered} \text { No } \\ {[259.1]} \end{gathered}$	$\underset{[260.1]}{\mathbf{L r}}$

