CHEM1902 - CHEMISTRY 1B (ADVANCED)

and

CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM)
 SECOND SEMESTER EXAMINATION
 CONFIDENTIAL

NOVEMBER 2005
TIME ALLOWED: THREE HOURS
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY		SID	
NAME		NUMBER	
OTHER		TABLE	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 17 \& 24 are for rough working only.

OFFICIAL USE ONLY
Multiple choice section

Short answer section

Page	Marks			Marker
	Max	Gained		
14	8			
15	7			
16	7			
18	2			
19	6			
20	6			
21	7			
22	3			
23	4			
Total	50			

- 2-Propanol can be oxidised to acetone using $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ in acidic solution as indicated in the reaction below. The rate of decrease of the $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ion under a certain set of conditions is $3.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$.

$$
3 \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+8 \mathrm{H}^{+} \rightarrow 3 \mathrm{CH}_{3} \mathrm{COCH}_{3}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

What is the rate of increase in the concentration of Cr^{3+} ?

What is the rate of decrease in the concentration of 2-propanol?

The rate law for this reaction is: \quad Rate $=k\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right]\left[\mathrm{H}^{+}\right]^{2}$
Complete the following table by writing increase, decrease or no change in the box to indicate how the rate of the reaction is affected by each of the following changes.

- Complete the following table.

Formula	Systematic name	Oxidation state of transition metal	Number of d-electrons
$\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]$			
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$			

- Calculate the pH of a solution that is prepared by mixing 500 mL of $1.0 \mathrm{M} \mathrm{NH}_{3}$ with 500 mL of $2.0 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$. The $\mathrm{p} K_{\mathrm{b}}$ of NH_{3} is 4.76 .
\square
In the presence of excess hydroxide ion, Mg^{2+} can be precipitated as $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$. What amount (in mol) of solid sodium hydroxide must be added to a 0.10 M solution of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ to just cause precipitation of $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$. The solubility product constant of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $7.1 \times 10^{-12} \mathrm{M}^{3}$.

ANSWER:

In a separate experiment, the $\mathrm{Mg}(\mathrm{OH})_{2}$ is precipitated by adding 0.10 mol of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ to 1.0 L of a $0.10 \mathrm{M} \mathrm{NH}_{3}$ solution. What amount (in mol) of $\mathrm{NH}_{4} \mathrm{Cl}$ must be added to this solution to just dissolve the precipitate?

- Shown here is the classical form of the amino acid leucine.

List the types of intermolecular interactions in which the sites \mathbf{A} and \mathbf{B} could be involved.

A
B
Leucine has an unusually high melting point for a small molecule. Suggest a reason for this.

- Metal atoms participate in many biological processes. The following table shows a number of metals, one property of each metal and the biological function for which the metal is important. Complete the table.

Metal	Property which is important for biological activity	Biological function to which this property is relevant
Cu	Can exist in two oxidation states, +I and +II	
	Forms square-planar co-ordination compounds	Cancer chemotherapy
Fe		Oxygen transport in blood

- Ice is less dense than liquid water. The triple point of water is $0.001^{\circ} \mathrm{C}, 0.006 \mathrm{~atm}$ and its critical point is $374^{\circ} \mathrm{C}$, 218 atm . Sketch the phase diagram for water showing all the main features.
- Draw the structure(s) of the major organic product(s) formed in each of the following reactions. Give the names of the products where requested.
(

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Compound \mathbf{X} can be reduced by treatment with sodium borohydride followed by dilute hydrochloric acid to form a mixture of diol compounds.

Clearly draw all possible product stereoisomers that can form from this reduction, taking care to represent clearly the stereochemistry of the products.
\square
Clearly label each isomer drawn above as either chiral or achiral (not chiral).
Circle one of the product isomers you have drawn above and provide a full systematic name for this compound below. Make sure you include all relevant stereochemical descriptors.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Compound \mathbf{Y} can readily be identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

On the diagram of \mathbf{Y}, write the letters $\mathbf{a}, \mathbf{b}, \mathbf{c}$, etc. as necessary to identify each unique hydrogen environment giving rise to a signal in the ${ }^{1} \mathrm{H}$ NMR spectrum.
\qquad

Sketch the ${ }^{1} \mathrm{H}$ NMR spectrum of compound \mathbf{Y}. Label each signal in the spectrum with $\mathbf{a}, \mathbf{b}, \mathbf{c}$, etc. to correspond with your assignments on the diagram of \mathbf{Y}. Make sure you show the splitting pattern (number of fine lines) you expect to see for each signal. Also write the relative number of hydrogens you expect above each signal.

Compound \mathbf{Z} is an isomer of \mathbf{Y}.

What kind of isomers are they?
Compounds \mathbf{Y} and \mathbf{Z} can be readily distinguished by instrumental techniques.
Suggest how three different techniques can be used to distinguish between the two structures.

- Complete the two step mechanism for the reaction given below. Draw intermediate structures, curly arrows and partial charges as appropriate to illustrate the bonding changes that take place.

- Show clearly the reagents you would use to carry out the following chemical conversion. Draw constitutional formulas for any intermediate compounds. NOTE: More than one step is necessary.

CHEM1902 - CHEMISTRY 1B (ADVANCED)
 CHEM1904-CHEMISTRY 1B (SSP)
 DATA SHEET

Physical constants

Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J}$ s
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{e}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{p}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter
Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G

CHEM1902 - CHEMISTRY 1B (ADVANCED)
 CHEM1904 - CHEMISTRY 1B (SSP)

Standard Reduction Potentials, E°

Reaction
E° / V
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq}) \quad+1.82$
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq}) \quad+1.72$
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s}) \quad+1.50$
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq}) \quad+1.36$
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad+1.23$
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O}+0.96$
$\operatorname{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \operatorname{Pd}(\mathrm{s}) \quad+0.92$
$\operatorname{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \operatorname{Ag}(\mathrm{s}) \quad+0.80$
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq}) \quad+0.77$
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \quad+0.53$
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \quad+0.34$
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq}) \quad+0.15$
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g}) \quad 0$ (by definition)
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s}) \quad-0.04$
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s}) \quad-0.13$
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s}) \quad-0.14$
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s}) \quad-0.24$
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s}) \quad-0.44$
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s}) \quad-0.74$
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s}) \quad-0.76$
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \quad-0.83$
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s}) \quad-0.89$
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s}) \quad-1.68$
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s}) \quad-2.36$
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s}) \quad-2.71$
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s}) \quad-2.87$
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s}) \quad-3.04$

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

Useful formulas

Quantum Chemistry	Radioactivity
$E=h \nu=h c / \lambda$	$t_{1 / 2}=\ln 2 / \lambda$
$\lambda=h / m v$	$A=\lambda N$
$4.5 k_{\mathrm{B}} T=h c / \lambda$	
	${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$
$\Delta x \cdot \Delta(m v) \geq h / 4 \pi$	
Acids and Bases $\begin{aligned} & \mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00 \\ & \mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00 \\ & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\} \end{aligned}$	Gas Laws $\begin{aligned} & P V=n R T \\ & \left(P+n^{2} a / V^{2}\right)(V-n b)=n R T \end{aligned}$
Colligative properties $\begin{aligned} & \pi=\mathrm{c} R T \\ & P_{\text {solution }}=X_{\text {solvent }} \times P_{\text {solvent }}^{\circ} \\ & \mathrm{p}=k \mathrm{c} \\ & \Delta T_{\mathrm{f}}=K_{\mathrm{f}} m \\ & \Delta T_{\mathrm{b}}=K_{\mathrm{b}} m \end{aligned}$	Kinetics $\begin{aligned} & t_{1 / 2}=\ln 2 / k \\ & k=A \mathrm{e}^{-E_{\mathrm{a}} / R T} \\ & \ln [\mathrm{~A}]=\ln [\mathrm{A}]_{0}-k t \\ & \ln \frac{k_{2}}{k_{1}}=\frac{E_{\mathrm{a}}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \end{aligned}$
Electrochemistry $\Delta G^{\circ}=-n F E^{\circ}$ Moles of $e^{-}=I t / F$ $\begin{aligned} E & =E^{\circ}-(R T / n F) \times 2.303 \log Q \\ & =E^{\circ}-(R T / n F) \times \ln Q \\ E^{\circ} & =(R T / n F) \times 2.303 \log K \\ & =(R T / n F) \times \ln K \\ E & =E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right) \end{aligned}$	Thermodynamics \& Equilibrium $\begin{aligned} & \Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \\ & \Delta G=\Delta G^{\circ}+R T \ln Q \\ & \Delta G^{\circ}=-R T \ln K \\ & K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n} \end{aligned}$
Polymers $R_{\mathrm{g}}=\sqrt{\frac{n l_{0}^{2}}{6}}$	Mathematics If $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$ $\ln x=2.303 \log x$

CHEM1902/1904 November 2005

PERIODIC TABLE OF THE ELEMENTS

