22/11(a)

The University of Sydney

CHEM1902 - CHEMISTRY 1B (ADVANCED)

and

CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM)

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2005

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	Ν	SID IUMBER	
OTHER		TABLE	
NAMES	N	UMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 17 & 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

	Marks		
Page	Max	Gained	Marker
14	8		
15	7		
16	7		
18	2		
19	6		
20	6		
21	7		
22	3		
23	4		
Total	50		

	n be oxidised to acetone using Cr v. The rate of decrease of the Cr_2 s ⁻¹ .				Ma
3CH ₃ CH	$(OH)CH_3 + Cr_2O_7^{2-} + 8H^+ \rightarrow$	3CH ₃ COCH ₃	$+ 2Cr^{3+} + 7$	7H ₂ O	
What is the rat	te of increase in the concentration	n of Cr ³⁺ ?			
What is the rat	e of decrease in the concentratio	n of 2-propanol	?		
The rate law f	or this reaction is: $Rate = k$ [C	Cr ₂ O ₇ ^{2–}][CH ₃ CH	(OH)CH ₃][H	[⁺] ²	-
-	following table by writing <i>increa</i> the rate of the reaction is affected		•		
	Increase in [CH ₃ CH(OH)CH ₃]				
	Increase in [CH ₃ COCH ₃]				
	Increase in pH				
	Increase in temperature				
Complete the	following table.				
Formula	Systematic name	;	Oxidation state of transition metal	Number of <i>d</i> -electrons	
K ₂ [Pt(CN) ₄]					
$[Co(H_2O)_6]Cl_2$					

CHEM1902/1904	2005-N-3	November 2005	22/11(a
• Calculate the pH of a so 500 mL of 2.0 M NH ₄ C	For that is prepared by magnetized by $m_{\rm cl}$. The p $K_{\rm b}$ of $\rm NH_3$ is 4.76.	ixing 500 mL of 1.0 M NH_3 with	Mark 7
	ANSWE	 R:	
amount (in mol) of solid	d sodium hydroxide must be precipitation of Mg(OH) ₂ (s	be precipitated as $Mg(OH)_2(s)$. What added to a 0.10 M solution of). The solubility product constant of	
	ANSWE	R:	
	H ₃ solution. What amount (i	ed by adding 0.10 mol of Mg(NO ₃): n mol) of NH ₄ Cl must be added to	2
		R:	

4

• Shown here is the classical form of the amino acid leucine.

List the types of intermolecular interactions in which the sites \bf{A} and \bf{B} could be involved.

Α	
В	

Leucine has an unusually high melting point for a small molecule. Suggest a reason for this.

• Metal atoms participate in many biological processes. The following table shows a number of metals, one property of each metal and the biological function for which the metal is important. Complete the table.

Metal	Property which is important for biological activity	Biological function to which this property is relevant
Cu	Can exist in two oxidation states, +I and +II	
	Forms square-planar co-ordination compounds	Cancer chemotherapy
Fe		Oxygen transport in blood

8	tce is less dense than liquid water. The triple point of water is 0.001 °C, 0.006 atm and its critical point is 374 °C, 218 atm. Sketch the phase diagram for water showing all the main features.	Marks 2
	THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.	L

• Compound **X** can be reduced by treatment with sodium borohydride followed by **Marks 6**

Clearly draw all possible product stereoisomers that can form from this reduction, taking care to represent clearly the stereochemistry of the products.

Clearly label each isomer drawn above as either chiral or achiral (not chiral).

Circle one of the product isomers you have drawn above and provide a full systematic name for this compound below. Make sure you include all relevant stereochemical descriptors.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks • Compound **Y** can readily be identified by ¹H NMR spectroscopy. 7 On the diagram of **Y**, write the letters **a**, **b**, **c**, *etc*. as necessary to identify each unique hydrogen environment giving rise to a signal in the ¹H NMR spectrum. Y Sketch the ¹H NMR spectrum of compound **Y**. Label each signal in the spectrum with **a**, **b**, **c**, *etc*. to correspond with your assignments on the diagram of **Y**. Make sure you show the splitting pattern (number of fine lines) you expect to see for each signal. Also write the relative number of hydrogens you expect above each signal. 0 Compound **Z** is an isomer of **Y**. Ζ What kind of isomers are they? Compounds Y and Z can be readily distinguished by instrumental techniques. Suggest how three different techniques can be used to distinguish between the two structures.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

О					ŎН
	>	>> -	>	→ \\	
					\land

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

DATA SHEET

Physical constants

Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \text{ kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Decimal fractions			Deci	imal multi	ples
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10 ⁶	mega	Μ
10^{-9}	nano	n	10 ⁹	giga	G
10^{-12}	pico	р			

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

Standard Reduction Potentials, E^{o}

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	
$10 (aq) + 2c \rightarrow 10(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.13 -0.14
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s)	-0.14 -0.24
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.14 -0.24 -0.44
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.14 -0.24 -0.44 -0.74
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.14 -0.24 -0.44 -0.74 -0.76
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$	-0.14 -0.24 -0.44 -0.74 -0.76 -0.83
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.14 -0.24 -0.44 -0.74 -0.76 -0.83 -0.89
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-0.14 -0.24 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-0.14 -0.24 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.36
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$	$-0.14 \\ -0.24 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.36 \\ -2.71$

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

Useful formulas	
-----------------	--

Quantum Chemistry	Radioactivity
$E = h \nu = h c / \lambda$	$t_{1/2} = \ln 2/\lambda$
$\lambda = h/mv$	$A = \lambda N$
$4.5k_{\rm B}T = hc/\lambda$	$\ln(N_0/N_t) = \lambda t$
$E = Z^2 E_{\rm R}(1/n^2)$	14 C age = 8033 ln(A_0/A_t)
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{1/2} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-E_a/RT}$
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 = R T_1 T_2$
Electrochemistry	Thermodynamics & Equilibrium
$\Delta G^{\circ} = -nFE^{\circ}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
Moles of $e^- = It/F$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$	$\Delta G^{\circ} = -RT \ln K$
$= E^{\circ} - (RT/nF) \times \ln Q$	$K_{\rm p} = K_{\rm c} \ (RT)^{\Delta n}$
$E^{\circ} = (RT/nF) \times 2.303 \log K$	
$= (RT/nF) \times \ln K$	
$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$	
Polymers	Mathematics
$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	$\ln x = 2.303 \log x$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудгоден Н 1.008		_															2 нешим Не 4.003
3	4											5	6	7	8	9	10
LITHIUM	BERYLLIUM Be											BORON B	CARBON C	NITROGEN N	OXYGEN O	FLUORINE	NEON Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
sodium Na	MAGNESIUM Mg											ALUMINIUM Al	SILICON Si	PHOSPHORUS P	SULFUR S	CHLORINE Cl	ARGON Ar
22.99	24.31											26.98	28.09	3 0.97	32.07	35.45	39.95
19	20	21	22	2 23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITANI			MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
K 39.10	Ca 40.08	Sc 44.96	T i 47.8		Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.59	As 74.92	Se 78.96	Br 79.90	Kr 83.80
39.10	38	39	40		42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCON	IUM NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON
Rb	Sr	Y	Zı		Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.47	87.62	88.91	91.2		95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72		74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM CS	BARIUM Ba		HAFNI H		4 TUNGSTEN	RHENIUM Re	OSMIUM OS	iridium Ir	PLATINUM Pt		MERCURY Hg	THALLIUM	PD	віямитн Bi	POLONIUM PO	ASTATINE At	radon Rn
132.91	137.34		178.			186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103				107	108	109	175.07	170.77	200.07	201.37	207.2	200.70	[210.0]	[210.0]	[222.0]
FRANCIUM	RADIUM	07 105	RUTHERFO	DRDIUM DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM									
Fr	Ra		R		Sg	Bh	Hs	Mt									
[223.0]	[226.0]		[26]	1] [262]	[266]	[262]	[265]	[266]									
					1				-								1
	57		8	59	60	61	62	63	64	65		56	67	68	69	70	71
LANTHANID	DES LANTHA		пим Се	praseodymium Pr	NEODYMIUM Nd	PROMETHIUM Pm	samarium Sm	EUROPIUM Eu	GADOLINIU GAD	m terbi			HO	ERBIUM Er	THULIUM Tm	ytterbium Yb	LUTETIUM Lu
	138.).12	140.91	144.24	[144.9]	150.4	151.96	157.25				64.93	167.26	168.93	173.04	174.97
	150.	/ IT		110.71	111.01	[111/]	100.1	151.70	101.20	. 150.	/2 10	2.50 1	55	107.20	100.75	175.04	111.71

PERIODIC TABLE OF THE ELEMENTS

November 2005

CHEM1902/1904

22/11(b)

89 actinium

Ac

[227.0]

ACTINIDES

90 THORIUM

Th

232.04

91 protactinium

Pa

[231.0]

92 uranium

U

238.03

93 NEPTUNIUM

Np

[237.0]

94 plutonium

Pu

[239.1]

95 Americium

Am

[243.1]

96 curium

Cm

[247.1]

97 BERKELLIUM

Bk

[247.1]

98 californium

Cf

[252.1]

99 EINSTEINIUM

Es

[252.1]

100 Fermium

Fm

[257.1]

101 mendelevium

Md

[256.1]

102 NOBELIUM

No

[259.1]

103 LAWRENCIUM

Lr

[260.1]