Topics in the November 2006 Exam Paper for CHEM1904

Click on the links for resources on each topic.

2006-N-2:

- Weak Acids and Bases
- Calculations Involving pKa
- Solubility Equilibrium

2006-N-3:

- Kinetics

2006-N-4:

- Metals in Biology

2006-N-5:

- Coordination Chemistry

2006-N-6:

- Alkenes
- Alcohols
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives

2006-N-7:

- Alkenes
- Stereochemistry

2006-N-8:

- Structural Determination

2006-N-9:

- Carboxylic Acids and Derivatives
- Organic Mechanisms and Molecular Orbitals

2006-N-10:

- Synthetic Strategies

CHEM1902 - CHEMISTRY 1B (ADVANCED)

and

CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM)
 SECOND SEMESTER EXAMINATION
 CONFIDENTIAL

NOVEMBER 2006
TIME ALLOWED: THREE HOURS
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME		SID	
OTHER		TABBER	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages $17,21 \& 24$ are for rough working only.

OFFICIAL USE ONLY

Short answer section

Page	Marks			Marker
	Max	Gained		
13	6			
14	7			
15	8			
16	4			
18	6			
19	7			
20	5			
22	3			
23	4			
Total	50			

- Calculate the pH of a solution that is prepared by mixing 750 mL of 1.0 M potassium dihydrogenphosphate with 250 mL of 1.0 M potassium hydrogenphosphate.
For $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{p} K_{\mathrm{a} 1}=2.15, \mathrm{p} K_{\mathrm{a} 2}=7.20, \mathrm{p} K_{\mathrm{a} 3}=12.38$
\square

Answer:

- 2.00 g of solid calcium hydroxide is added to 1.00 L of water. What proportion of the calcium hydroxide remains undissolved when the system has reached equilibrium? $K_{\text {sp }}\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)=6.5 \times 10^{-6} \mathrm{M}^{3}$

Answer:

What volume (in mL) of 10.0 M nitric acid must be added to this mixture in order to just dissolve all of the calcium hydroxide? Assume the volume of the nitric acid is small and can be ignored in the calculation of the total volume.

- The major pollutants $\mathrm{NO}(\mathrm{g}), \mathrm{CO}(\mathrm{g}), \mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ are emitted by cars and can react according to the following equation.

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

The following rate data were collected at $225^{\circ} \mathrm{C}$.

Experiment	$\left[\mathrm{NO}_{2}\right]_{0}(\mathrm{M})$	$[\mathrm{CO}]_{0}(\mathrm{M})$	Initial rate $\left(\mathrm{d}\left[\mathrm{NO}_{2}\right] / \mathrm{dt}, \mathrm{M} \mathrm{s}^{-1}\right)$
1	0.263	0.826	1.44×10^{-5}
2	0.263	0.413	1.44×10^{-5}
3	0.526	0.413	5.76×10^{-5}

Determine the rate law for the reaction.
\qquad
Calculate the value of the rate constant at $225^{\circ} \mathrm{C}$.
\square
Calculate the rate of appearance of CO_{2} when $\left[\mathrm{NO}_{2}\right]=[\mathrm{CO}]=0.500 \mathrm{M}$.
\square
Suggest a possible mechanism for the reaction based on the form of the rate law.
Explain your answer.

- Silicate based minerals and materials are all based on the $\mathrm{SiO}_{4}{ }^{2-}$ tetrahedron which can be linked to produce ring, chain, sheet and 3-d network structures. Select two examples, list the intermolecular forces between the units, and explain how these contribute to the physical properties of minerals or materials made up of these units.
- Iron, copper and zinc all play important natural roles in our biology. Select one of these elements and explain what features of its chemistry are important in allowing the element to carry out its roles.
\square
Platinum complexes and lithium salts are active pharmaceutical agents. Select one and explain what features of its metal's chemistry are important in allowing it to be an effective pharmaceutical.
- Consider the complex $\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Write the systematic name of this complex.

What type(s) of isomerism is/are possible for this complex?

How many d electrons are there in the cobalt in this complex?

What oxidation state of platinum has the same number of valence shell d electrons as the cobalt in this complex?
\square
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Draw the structure(s) of the major organic product(s) formed in each of the following reactions. Give the names of the products where requested.
(s)

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Compound \mathbf{X} undergoes an addition reaction on treatment with dilute aqueous sulfuric acid to form a mixture of diol compounds.

Draw all possible products (major and minor) that can form from this reaction. Take care to represent clearly the stereochemistry of all the products.

Clearly label each isomer drawn above as either chiral or achiral (not chiral).
Circle one of the isomers that you expect to be a major product of the reaction and provide a full systematic name for this compound below. Make sure you include all relevant stereochemical descriptors.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Compound \mathbf{Y} can readily be identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

On the diagram of \mathbf{Y}, write the letters $\mathbf{a}, \mathbf{b}, \mathbf{c}$, etc. as necessary to identify each unique hydrogen environment giving rise to a signal in the ${ }^{1} \mathrm{H}$ NMR spectrum.

Y

Sketch the ${ }^{1} \mathrm{H}$ NMR spectrum of compound \mathbf{Y}. Label each signal in the spectrum with $\mathbf{a}, \mathbf{b}, \mathbf{c}$, etc. to correspond with your assignments on the diagram of \mathbf{Y}. Make sure you show the splitting pattern (number of fine lines) you expect to see for each signal. Also write the relative number of hydrogens you expect above each signal.

Compound \mathbf{Z} is an isomer of \mathbf{Y}.
Z

What kind of isomers are they?

Compounds \mathbf{Y} and \mathbf{Z} can be readily distinguished based on the analysis of spectroscopic data. Suggest three differences that would distinguish between the two structures.

- Complete the mechanism for the reaction given below. Draw partial charges and curly arrows as appropriate to illustrate the bonding changes that take place.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Show clearly the reagents you would use to carry out the following chemical conversion. Draw constitutional formulas for any intermediate compounds. NOTE: More than one step is necessary.

\qquad

CHEM1902 - CHEMISTRY 1B (ADVANCED)
 CHEM1904 - CHEMISTRY 1B (SSP)
 DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{\mathrm{e}}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{\mathrm{p}}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$0^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G

CHEM1902 - CHEMISTRY 1B (ADVANCED)
 CHEM1904 - CHEMISTRY 1B (SSP)

Standard Reduction Potentials, E°

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$	+1.72
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$	+1.50
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	+1.23
$\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq})$	+1.10
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$	+0.96
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd}(\mathrm{s})$	+0.92
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}{ }^{2+}(\mathrm{aq})$	+0.77
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}{ }^{2+}(\mathrm{aq})$	+0.15
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}(\mathrm{g})$	$0(\mathrm{by} \mathrm{definition)})$
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.04
$\mathrm{~Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.24
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{s})$	-0.28
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.74
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.76
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}(\mathrm{g})+2 \mathrm{OH}(\mathrm{aq})$	-0.83
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.36
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$	-2.71
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s})$	-3.04
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	

CHEM1902 - CHEMISTRY 1B (ADVANCED)
 CHEM1904 - CHEMISTRY 1B (SSP)

Useful formulas

Quantum Chemistry	Electrochemistry
$E=h \nu=h c / \lambda$	$\Delta G^{\circ}=-n F E^{\circ}$
$\lambda=h / m v$	Moles of $e^{-}=I t / F$
$4.5 k_{\mathrm{B}} T=h c / \lambda$	$E=E^{\circ}-(R T / n F) \times 2.303 \log Q$
$E=Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right)$	$=E^{\circ}-(R T / n F) \times \ln Q$
$\Delta x \cdot \Delta(m v) \geq h / 4 \pi$	$E^{\circ}=(R T / n F) \times 2.303 \log K$
$q=4 \pi r^{2} \times 5.67 \times 10^{-8} \times T^{4}$	$=(R T / n F) \times \ln K$
	$E=E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right)$
Acids and Bases	Gas Laws
$\mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00$	$P V=n R T$
$\mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00$	$\left(P+n^{2} a / V^{2}\right)(V-n b)=n R T$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\}$	
Colligative properties	Kinetics
$\pi=\mathrm{c} R T$	$t_{1 / 2}=\ln 2 / k$
$P_{\text {solution }}=X_{\text {solvent }} \times P_{\text {solvent }}^{\circ}$	$k=A \mathrm{e}^{-E_{\mathrm{a}} / R T}$
$\mathrm{p}=\mathrm{kc}$	$\ln [\mathrm{A}]=\ln [\mathrm{A}]_{0}-k t$
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m$	$\ln \frac{k_{2}}{T}=\frac{E_{\mathrm{a}}}{\mathrm{D}}\left(\frac{1}{T}-\frac{1}{T}\right)$
$\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m$	$\left.{ }^{1 n} \overline{k_{1}}-\overline{T_{1}}-\overline{T_{2}}\right)$
Radioactivity	Thermodynamics \& Equilibrium
$t_{1 / 2}=\ln 2 / \lambda$	$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
$A=\lambda N$	$\Delta G=\Delta G^{\circ}+R T \ln Q$
$\ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t$	$\Delta G^{\circ}=-R T \ln K$
${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$	$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$
Polymers$R_{\mathrm{g}}=\sqrt{\frac{n l_{0}^{2}}{6}}$	Mathematics
	If $\mathrm{ax} x^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
	$\ln x=2.303 \log x$

