Click on the links for resources on each topic.

2007-N-2:

- Solubility Equilibrium
- Intermolecular Forces and Phase Behaviour

2007-N-3:

- Weak Acids and Bases
- Calculations Involving $\mathrm{p} K_{\mathrm{a}}$

2007-N-4:

- Metal Complexes
- Coordination Chemistry

2007-N-5:

- Kinetics

2007-N-6:

- Crystal Structures

2007-N-7:

2007-N-8:

- Alcohols
- Alkynes
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives

2007-N-9:

- Stereochemistry
- Organic Mechanisms and Molecular Orbitals

2007-N-10:

- Structural Determination

2007-N-11:

- Synthetic Strategies

2007-N-12:

- Alkenes
- Alcohols
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives

2007-N-13:

- Synthetic Strategies

CHEM1902 - CHEMISTRY 1B (ADVANCED)

and

CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM)
 SECOND SEMESTER EXAMINATION
 CONFIDENTIAL

NOVEMBER 2007

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME		SID	
OTHER		TABBER	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 14 \& 24 are for rough working only.

OFFICIAL USE ONLY

Short answer section

Page	Marks			Marker
	Max	Gained		
11	5			
12	5			
13	6			
15	5			
16	5			
17	4			
18	6			
19	6			
20	9			
21	4			
22	5			
23	4			
Total	64			

- In order to reduce the incidence of dental cavities, water is fluoridated to a level of $1 \mathrm{mg} \mathrm{L}^{-1}$. In regions where the water is "hard" the calcium concentration is typically $100 \mathrm{mg} \mathrm{L}^{-1}$. Given that the $K_{\text {sp }}$ of calcium fluoride is $3.9 \times 10^{-11} \mathrm{M}^{3}$, would it precipitate in these conditions? Show all working.
\square Answer:
- Consider the boiling points of the following monosubstituted benzenes.

	$\mathrm{C}_{6} \mathrm{H}_{6}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
b.p.	$80{ }^{\circ} \mathrm{C}$	$85{ }^{\circ} \mathrm{C}$	$132{ }^{\circ} \mathrm{C}$	$156{ }^{\circ} \mathrm{C}$	$182{ }^{\circ} \mathrm{C}$

Explain this order of boiling points.

- The primary buffering system in blood plasma is represented by the following equation:

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \quad \mathrm{p} K_{\mathrm{a}}=6.1
$$

What is the ratio $\mathrm{HCO}_{3}{ }^{-}: \mathrm{H}_{2} \mathrm{CO}_{3}$ at the normal plasma pH of 7.4 ?

A typical person has 2 L of blood plasma. If such a person were to drink 1 L of soft drink with a pH of 2.5 , what would the plasma pH be if it were not buffered? (Assume all of the H^{+}from the soft drink is absorbed by the plasma, but the volume of plasma does not increase.)

Answer:

What is the pH in this typical person with a normal $\mathrm{HCO}_{3}{ }^{-}$concentration of 0.020 M ? Ignore any other contributions to the buffering.

- Alfred Werner, one of the founders of the field of coordination chemistry, made extensive studies of the metal complex $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$. He showed that it existed in two isomeric forms and used this information to predict that the compound had a square-planar molecular geometry. What other molecular geometry would need to be considered for such a complex and on what basis did Werner reject this alternative geometry?

Draw and name the two isomers.
\qquad
Why does platinum(II) form square-planar complexes?
\qquad
Which one of the isomers is biologically active? What is its activity? Describe two features of the complex that play important roles in this biological activity.

- Nitric oxide, a noxious pollutant, and hydrogen react to give nitrous oxide and water according to the following equation.

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The following rate data were collected at $225^{\circ} \mathrm{C}$.

Experiment	$[\mathrm{NO}]_{0}(\mathrm{M})$	$\left[\mathrm{H}_{2}\right]_{0}(\mathrm{M})$	Initial rate $\left(\mathrm{d}[\mathrm{NO}] / \mathrm{dt}, \mathrm{M} \mathrm{s}^{-1}\right)$
1	6.4×10^{-3}	2.2×10^{-3}	2.6×10^{-5}
2	1.3×10^{-2}	2.2×10^{-3}	1.0×10^{-4}
3	6.4×10^{-3}	4.4×10^{-3}	5.1×10^{-5}

Determine the rate law for the reaction.
\qquad
Calculate the value of the rate constant at $225^{\circ} \mathrm{C}$.
\square
Calculate the rate of appearance of $\mathrm{N}_{2} \mathrm{O}$ when $[\mathrm{NO}]=\left[\mathrm{H}_{2}\right]=6.6 \times 10^{-3} \mathrm{M}$.
\square
Suggest a possible mechanism for the reaction based on the form of the rate law.
Explain your answer.

- The diagram below shows the structure of perovskite, a mineral made up of calcium (at each of the corners), oxygen (in the centre of each of the faces), and titanium (at the centre of the cube). The unit cell dimension (edge length, a) for perovskite is 0.38 nm .

○ calcium

- oxygen
- titanium

What is the chemical formula of perovskite?
\square
What is the volume of the unit cell?

Answer:

What is the density of perovskite? Give your answer in $\mathrm{g} \mathrm{cm}^{-3}$.
\square

- Write balanced ionic equations for the reactions that occur in each of the following. If no reaction occurs, write "NO REACTION".

Excess 16 M ammonia solution is added to solid silver iodide.
\square
Excess 4 M ammonia solution is added to a 1 M magnesium sulfate solution.
\square
Excess 4 M hydrochloric acid is added to solid cadmium sulfide.

Excess 4 M sodium hydroxide solution is added to 1 M zinc nitrate solution.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Draw the structure(s) of the major organic product(s) formed in each of the following reactions. Give the names of the products where requested.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Compound \mathbf{X} undergoes an addition reaction on treatment with hydrogen gas in the

Marks
6 presence of a palladium on carbon catalyst to form a mixture of cyclic alkanes.

X

Clearly draw all possible products that can form from this reaction, taking care to represent the stereochemistry of the products clearly.

Clearly label each isomer drawn above as either chiral or achiral (not chiral).
Circle one of the isomers and provide a full systematic name for this compound below. Make sure you include all relevant stereochemical descriptors.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Compound \mathbf{Y} can be readily analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

On the diagram of \mathbf{Y}, write the letters $\mathbf{a}, \mathbf{b}, \mathbf{c}$, etc. as necessary to identify each unique hydrogen environment giving rise to a signal in the ${ }^{1} \mathrm{H}$ NMR spectrum.

Sketch the ${ }^{1} \mathrm{H}$ NMR spectrum of compound \mathbf{Y}. Label each signal in the spectrum with $\mathbf{a}, \mathbf{b}, \mathbf{c}$, etc. to correspond with your assignments on the diagram of \mathbf{Y}. Make sure you show the splitting pattern (number of fine lines) you expect to see for each signal. Also write the relative number of hydrogens you expect above each signal.
\qquad

Compound \mathbf{Z} is an isomer of \mathbf{Y}.

What kind of isomers are they?

How would you distinguish between compounds \mathbf{Y} and \mathbf{Z} using chemical reactions, spectroscopic analysis or other means?

- Complete the two-step mechanism for the reaction given below. Draw partial charges, curly arrows and intermediate structures as appropriate to illustrate the bonding changes that take place.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1902/1904
Starting material
Complete the following table.
Reagents / Conditions

- Complete the following table.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Show clearly the reagents you would use to carry out the following chemical conversion. Draw constitutional formulas for any intermediate compounds. NOTE: More than one step is necessary.

CHEM1902 - CHEMISTRY 1B (ADVANCED)
 CHEM1904 - CHEMISTRY 1B (SSP)
 DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{\mathrm{e}}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{\mathrm{p}}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple Prefix Symbol

 10^{3} kilo k10^{6} mega M
$10^{9} \quad$ giga G

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

Standard Reduction Potentials, E°

Reaction
E° / V
$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-} \quad+2.01$
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$
$+1.82$
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq}) \quad+1.72$
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s}) \quad+1.50$
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq}) \quad+1.36$
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad+1.23$
$\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq}) \quad+1.10$
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O} \quad+0.96$
$\operatorname{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \operatorname{Pd}(\mathrm{s}) \quad+0.92$
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s}) \quad+0.80$
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq}) \quad+0.77$
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \quad+0.53$
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \quad+0.34$
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq}) \quad+0.15$
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g}) \quad 0$ (by definition)
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s}) \quad-0.04$
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s}) \quad-0.13$
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s}) \quad-0.14$
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s}) \quad-0.24$
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{s}) \quad-0.28$
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s}) \quad-0.44$
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s}) \quad-0.74$
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s}) \quad-0.76$
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \quad-0.83$
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s}) \quad-0.89$
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s}) \quad-1.68$
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s}) \quad-2.36$
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s}) \quad-2.71$
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s}) \quad-2.87$
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s}) \quad-3.04$

CHEM1902 - CHEMISTRY 1B (ADVANCED)
 CHEM1904 - CHEMISTRY 1B (SSP)

Useful formulas

Quantum Chemistry	Electrochemistry
$E=h \nu=h c / \lambda$	$\Delta G^{\circ}=-n F E^{\circ}$
$\lambda=h / m v$	Moles of $e^{-}=I t / F$
$4.5 k_{\mathrm{B}} T=h \mathrm{c} / \lambda$	$E=E^{\circ}-(R T / n F) \times 2.303 \log Q$
$E=-Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right)$	$=E^{\circ}-(R T / n F) \times \ln Q$
$\Delta x \cdot \Delta(m v) \geq h / 4 \pi$	$E^{\circ}=(R T / n F) \times 2.303 \log K$
$q=4 \pi r^{2} \times 5.67 \times 10^{-8} \times T^{4}$	$=(R T / n F) \times \ln K$
	$E=E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right)$
Acids and Bases	Gas Laws
$\mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00$	$P V=n R T$
$\mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00$	$\left(P+n^{2} a / V^{2}\right)(V-n b)=n R T$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\}$	
Colligative properties	Kinetics
$\pi=c R T$	$t_{1 / 2}=\ln 2 / k$
$P_{\text {solution }}=X_{\text {solvent }} \times P^{\circ}{ }_{\text {solvent }}$	$k=A \mathrm{e}^{-E_{\mathrm{a}} / R T}$
$\mathrm{p}=\mathrm{kc}$	$\ln [\mathrm{A}]=\ln [\mathrm{A}]_{0}-k t$
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m$	$\ln \frac{k_{2}}{T}=\frac{E_{a}}{n}\left(\frac{1}{T}-\frac{1}{T}\right)$
$\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m$	$\begin{array}{llll}k_{1} & R & T_{1} & T_{2}\end{array}$
Radioactivity	Thermodynamics \& Equilibrium
$t_{1 / 2}=\ln 2 / \lambda$	$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
$A=\lambda N$	$\Delta G=\Delta G^{\circ}+R T \ln Q$
$\ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t$	$\Delta G^{\circ}=-R T \ln K$
${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$	$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$
Miscellaneous	Mathematics
$A=-\log _{10} \frac{I}{I_{0}}$	If $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$A=\varepsilon c l$	$\ln x=2.303 \log x$
$E=-A \frac{e^{2}}{4 \pi \varepsilon_{0} r} N_{\mathrm{A}}$	

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
																	2 нним He 4.003
$\begin{gathered} \hline 3 \\ \text { цгним } \\ \mathbf{L i} \\ 6.941 \\ \hline \end{gathered}$	$\begin{gathered} \hline 4 \\ \text { ввгy.uм } \\ \mathbf{B e} \\ 9.012 \end{gathered}$											$\begin{gathered} 5 \\ \text { Boron } \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} \hline 6 \\ \text { саввом } \\ \mathbf{C} \\ 12.01 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ \hline \begin{array}{c} 7 \\ \text { лirocen } \\ \mathbf{N} \\ 14.01 \end{array} \end{gathered}$	$\begin{gathered} \hline 8 \\ \substack{8 \\ \text { oxcen } \\ \mathbf{O} \\ 16.00 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 9 \\ \text { fluorne } \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} \hline 10 \\ \text { Neon } \\ \text { Ne } \\ 20.18 \\ \hline \end{gathered}$
$\begin{gathered} \hline 11 \\ \text { sonum } \\ \mathrm{Na} \\ 22.99 \end{gathered}$	$\begin{gathered} \hline 12 \\ \text { масанsum } \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} \hline 13 \\ \substack{\text { Ацшммимм } \\ \text { Al } \\ 26.98 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 14 \\ \text { surcow } \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \substack{\text { phosphorus } \\ \mathbf{P} \\ 30.97} \end{gathered}$	$\begin{gathered} \hline 16 \\ \substack{\text { sururu } \\ \mathbf{S} \\ 32.07} \end{gathered}$	$\begin{gathered} 17 \\ \begin{array}{c} \text { chlorne } \\ \text { Cl } \\ 35.45 \end{array} \end{gathered}$	$\begin{gathered} \hline 18 \\ \text { ARGow } \\ \mathbf{A r} \\ 39.95 \\ \hline \end{gathered}$
$\begin{gathered} \hline \begin{array}{c} 19 \\ \text { porassum } \\ \mathbf{K} \end{array} \\ 39.10 \end{gathered}$	$\begin{gathered} \hline 20 \\ \text { саистм } \\ \text { Ca } \\ 40.08 \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 \\ \text { scannum } \\ \text { Sc } \\ 44.96 \\ \hline \end{gathered}$	$\begin{gathered} \hline 22 \\ \substack{\text { тталим } \\ \mathbf{T i} \\ 47.88} \end{gathered}$	$\begin{gathered} \hline 23 \\ \left.\begin{array}{c} \text { vaxamum } \\ \mathbf{V} \\ 50.94 \\ \hline \end{array} \right\rvert\, \end{gathered}$	$\begin{gathered} 24 \\ \begin{array}{c} 24 \\ \text { chronuм } \\ \mathbf{C r} \end{array} \\ 52.00 \end{gathered}$	$\begin{gathered} \hline 25 \\ \text { мамаменs } \\ \mathbf{M n} \\ 54.94 \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ \text { ırov } \\ \mathbf{F e} \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 27 \\ \text { соват } \\ \mathbf{C o} \\ 58.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 28 \\ \text { м мскн } \\ \mathbf{N i} \\ 58.69 \\ \hline \end{gathered}$	$\begin{gathered} \hline 29 \\ \text { copres } \\ \mathbf{C u} \\ 63.55 \\ \hline \end{gathered}$	$\begin{gathered} \hline 30 \\ \text { zunc } \\ \mathbf{Z n} \\ 65.39 \end{gathered}$	$\begin{gathered} \hline 31 \\ \text { Galluм } \\ \text { Ga } \\ 69.72 \\ \hline \end{gathered}$	$\begin{gathered} \hline 32 \\ \text { GвRмалাм } \\ \mathbf{G e} \\ 72.59 \\ \hline \end{gathered}$	$\begin{gathered} \hline 33 \\ \hline \text { ARsenc } \\ \text { As } \\ 74.92 \\ \hline \end{gathered}$	$\begin{gathered} \hline 34 \\ \text { SELENUM } \\ \text { Se } \\ 78.96 \end{gathered}$		$\begin{gathered} \hline 36 \\ \text { ккетом } \\ \mathbf{K r} \\ 83.80 \\ \hline \end{gathered}$
$\begin{gathered} 37 \\ \text { Rubipum } \\ \mathbf{R b} \\ 85.47 \end{gathered}$	$\begin{gathered} \hline 38 \\ \substack{3 \text { stonvuм } \\ \mathbf{S r} \\ 87.62} \end{gathered}$	$\begin{gathered} \hline 39 \\ \text { yтtruм } \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{array}{\|c} \hline 40 \\ \text { zгсомим } \\ \mathbf{Z r} \\ 91.22 \end{array}$	$\begin{gathered} \hline 41 \\ \text { мовнмм } \\ \mathbf{N b} \\ 92.91 \\ \hline \end{gathered}$	42 моиввеким Mo 95.94	$\begin{gathered} \hline 43 \\ \text { тесниетим } \\ \mathbf{T c} \\ {[98.91]} \end{gathered}$		$\begin{gathered} \hline 45 \\ \text { Rногим } \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} \hline 46 \\ \hline \text { райаным } \\ \mathbf{P d} \\ 106.4 \end{gathered}$	$\begin{gathered} \hline 47 \\ \text { sulver } \\ \mathbf{A g} \\ 107.87 \\ \hline \end{gathered}$	$\begin{gathered} \hline 48 \\ \substack{\text { cармим } \\ \text { Cd } \\ 112.40} \end{gathered}$	$\begin{gathered} \hline 49 \\ \text { мnoum } \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} \hline 50 \\ \text { тiv } \\ \text { Sn } \\ 118.69 \end{gathered}$	$\begin{gathered} \hline 51 \\ \text { ANTIMNY } \\ \text { Sb } \\ 121.75 \\ \hline \end{gathered}$	$\begin{gathered} \hline 52 \\ \text { теишиим } \\ \mathbf{T e} \\ 127.60 \\ \hline \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} 53 \\ \text { ronne } \\ \mathbf{I} \\ 126.90 \end{array} \end{gathered}$	$\begin{gathered} \hline 54 \\ \text { xerow } \\ \mathbf{X e} \\ 131.30 \end{gathered}$
$\begin{gathered} \hline 55 \\ \text { савsum } \\ \text { Cs } \\ 132.91 \\ \hline \end{gathered}$	$\begin{gathered} \hline 56 \\ \text { BаRuм } \\ \mathbf{B a} \\ 137.34 \\ \hline \end{gathered}$	57-71	$\begin{gathered} \hline 72 \\ \text { панемим } \\ \mathbf{H f} \\ 178.49 \\ \hline \end{gathered}$	$\begin{gathered} \hline 73 \\ \text { талтацим } \\ \mathbf{T a} \\ 180.95 \\ \hline \end{gathered}$	$\begin{gathered} \hline 74 \\ \text { tuncrin } \\ \mathbf{W} \\ 183.85 \\ \hline \end{gathered}$	$\begin{gathered} 75 \\ \text { RHENUM } \\ \mathbf{R e} \\ 186.2 \end{gathered}$	$\begin{gathered} 76 \\ \text { овмим } \\ \text { Os } \\ 190.2 \end{gathered}$	$\begin{array}{\|c\|} \hline 77 \\ \text { renuum } \\ \mathbf{I r} \\ 192.22 \\ \hline \end{array}$		$\begin{gathered} \hline 79 \\ \text { cold } \\ \mathbf{A u} \\ 196.97 \\ \hline \end{gathered}$	$\begin{gathered} \hline 80 \\ \text { MERCury } \\ \mathbf{H g} \\ 200.59 \\ \hline \end{gathered}$	$\begin{gathered} \hline 81 \\ \text { тианим } \\ \mathbf{T l} \\ 204.37 \\ \hline \end{gathered}$	$\begin{gathered} \hline 82 \\ \text { LEAD } \\ \text { Pb } \\ 207.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 83 \\ \text { BISNuTH } \\ \mathbf{B i} \\ 208.98 \\ \hline \end{gathered}$	$\begin{gathered} 84 \\ \text { polonum } \\ \text { Po } \\ {[210.0]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 85 \\ \text { Astatine } \\ \mathbf{A t} \\ {[210.0]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 86 \\ \text { Ranow } \\ \mathbf{R n} \\ {[222.0]} \end{gathered}$
$\begin{gathered} 87 \\ \begin{array}{c} \text { rRaccum } \\ \text { Fr } \\ {[223.0]} \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \hline 88 \\ \text { Ranum } \\ \mathbf{R a} \\ {[226.0]} \\ \hline \end{gathered}$	89-103	104 عетневrobuum $\mathbf{R f}$ $[261]$	$\begin{gathered} 105 \\ \text { ривлим } \\ \mathbf{D b} \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 106 \\ \text { seabogaium } \\ \mathbf{S g} \\ {[266]} \end{gathered}$	$\begin{aligned} & \hline 107 \\ & \text { nonumum } \\ & \text { Bh } \\ & {[262]} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 108 \\ \text { Hassum } \\ \text { Hs } \\ {[265]} \\ \hline \end{gathered}$	109 меाnerum Mt [266]	110 DaRмstatuм $\mathbf{D s}$ $[271]$	111 Roercenvin $\mathbf{R g}$ $[272]$							

LANTHANIDES	$\begin{gathered} 57 \\ \text { Lамтнамм } \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{gathered} 58 \\ \text { cerum } \\ \text { Ce } \\ 140.12 \end{gathered}$	59 pRaskopmum $\mathbf{P r}$ 140.91 91	60 меормим Nd 144.24 92	61 твомвниим $\mathbf{P m}$ $[144.9]$ 93	$\begin{gathered} \hline 62 \\ \text { samarum } \\ \text { Sm } \\ 150.4 \\ \hline \end{gathered}$	$\begin{gathered} 63 \\ \begin{array}{c} 6 \text { Eurourum } \\ \text { Eu } \\ 151.96 \end{array} \end{gathered}$	$\begin{gathered} 64 \\ \begin{array}{c} \text { c, соимим } \\ \text { Gd } \end{array} \\ 157.25 \end{gathered}$	$\begin{gathered} \hline 65 \\ \text { тевним } \\ \mathbf{T b} \\ 158.93 \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} 66 \\ \text { Dxspossum } \\ \text { Dy } \\ 162.50 \end{array} \end{gathered}$	$\begin{gathered} 67 \\ \text { ноомим } \\ \text { Ho } \\ 164.93 \end{gathered}$	$\begin{gathered} \hline 68 \\ \text { 6евㄴм } \\ \mathbf{E r} \\ 167.26 \\ \hline \end{gathered}$	$\begin{gathered} \hline 69 \\ \text { миним } \\ \mathbf{T m} \\ 168.93 \end{gathered}$	$\begin{gathered} 70 \\ \begin{array}{c} 7 \text { мтввнмм } \\ \mathbf{Y b} \\ 173.04 \end{array} \end{gathered}$	$\begin{gathered} \hline 71 \\ \text { чипгтм } \\ \mathbf{L u} \\ 174.97 \\ \hline \end{gathered}$
ACTINIDES	$\begin{gathered} \hline 89 \\ \hline \text { сстимм } \\ \text { Ac } \\ \text { Ac } \\ \hline \end{gathered}$	$\begin{gathered} \hline 90 \\ \text { 9новим } \\ \text { Th } \\ 232.04 \end{gathered}$	91 $\left.\begin{array}{c}\text { protacrinum } \\ \mathbf{P a} \\ {[231.0]}\end{array}\right]$	$\begin{gathered} \hline 92 \\ \begin{array}{c} \text { uranum } \\ \mathbf{U} \\ 238.03 \end{array} \end{gathered}$	$\begin{gathered} 93 \\ \substack{\text { neprunum } \\ \mathbf{N p} \\ [237.0]} \end{gathered}$	$\begin{gathered} 94 \\ \substack{94 \\ \text { puronum } \\ \mathbf{P u} \\ [239.1]} \end{gathered}$	95 $\left.\begin{array}{c}\text { Аменстим } \\ \text { Am } \\ {[243.1]}\end{array}\right]$	$\begin{gathered} 96 \\ \begin{array}{c} 96 \mathrm{ccu} \mathrm{~m} \\ \mathbf{C m} \\ {[247.1]} \end{array} \end{gathered}$	97 $\left.\begin{array}{c}\text { веккцишм } \\ \mathbf{B k} \\ {[247.1]}\end{array}\right]$	98 calforvuм Cf $[252.1]$	99 епмstenum Es $[252.1]$	$\begin{gathered} \hline 100 \\ \substack{\text { неппим } \\ \mathbf{F m} \\ [257.1]} \end{gathered}$	101 $\left.\begin{array}{c}\text { мепрениuм } \\ \text { Md } \\ \text { [256.1] }\end{array}\right]$	$\begin{gathered} 102 \\ \begin{array}{c} \text { мовним } \\ \text { No } \\ {[259.1]} \end{array} \end{gathered}$	$\begin{gathered} 103 \\ \text { Lawrexcum } \\ \mathbf{L r} \\ {[260.1]} \end{gathered}$

