Click on the links for resources on each topic.

2008-N-2:

- Weak Acids and Bases
- Calculations Involving $\mathrm{p} \mathrm{Ka}_{\mathrm{a}}$
- Solubility Equilibrium

2008-N-3:

- Weak Acids and Bases
- Calculations Involving pKa
- Solubility Equilibrium

2008-N-4:

- Intermolecular Forces and Phase Behaviour
- Physical States and Phase Diagrams

2008-N-5:

- Metal Complexes
- Coordination Chemistry

2008-N-6:

- Kinetics

2008-N-7:

- Kinetics
- Weak Acids and Bases
- Calculations Involving pKa

2008-N-8:

- Crystal Structures

2008-N-9:

- Alcohols
- Organic Halogen Compounds
- Aldehydes and Ketones
- Aromatic Compounds
- Carboxylic Acids and Derivatives

2008-N-10:

- Stereochemistry

2008-N-11:

- Aldehydes and Ketones
- Organic Mechanisms and Molecular Orbitals

2008-N-12:

- Alcohols
- Alkenes
- Stereochemistry

2008-N-14:

- Alcohols
- Carboxylic Acids and Derivatives

2008-N-15:

- Aromatic Compounds

CHEM1902 - CHEMISTRY 1B (ADVANCED)

and

CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM)

CONFIDENTIAL
NOVEMBER 2008

TIME ALLOWED: THREE HOURS
SECOND SEMESTER EXAMINATION

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME		SID	
OTHER		TABBER	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Page 24 is for rough working only.

OFFICIAL USE ONLY

Short answer section

Page	Marks			Marker
	Max	Gained		
10	4			
11	4			
12	4			
13	5			
14	5			
15	6			
16	5			
17	10			
18	5			
19	3			
20	3			
21	9			
22	4			
23	3			
Total	70			

- The ocean contains a variety of forms of $\mathrm{CO}_{3}{ }^{2-}$ and CO_{2} with a variety of acid-base and solubility equilibria determining their concentrations. There is concern that increasing levels of CO_{2} will lead to increased dissolution of CaCO_{3} and critically affect the survival of life forms that rely on a carbonaceous skeleton.
Calculate the concentrations of Ca^{2+} and $\mathrm{CO}_{3}{ }^{2-}$ in a saturated solution of CaCO_{3}. (The $K_{\text {sp }}$ of CaCO_{3} is 3.3×10^{-9}.)

Calculate the pH of such a solution. (The $\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{HCO}_{3}{ }^{-}$is 10.33).

The pH of surface ocean water is currently 8.10 (having fallen from a pre-industrial era level of 8.16), the concentration of HCO_{3}^{-}is $2.5 \times 10^{-3} \mathrm{M}$, and it is saturated with CaCO_{3}. Calculate the concentration of Ca^{2+} in these conditions.

The pH is expected to drop to about 7.8 by the end of the century as CO_{2} levels increase further. What effect will this have on the solubility of CaCO_{3} in sea water? Use chemical equations to assist with explaining your answer.

- F_{2} and Cl_{2} are gases at room temperature, Br_{2} is a liquid, and I_{2} is a solid. Explain why the melting points and boiling points of the halogens increase going down the group.
\square

Shown above is the phase diagram for iodine. What are the melting and boiling points of iodine at atmospheric pressure?

In what way would you need to change the conditions to make iodine, initially at room temperature and pressure, sublime?

Describe what will happen if pressure is applied to a sample of solid iodine.

- Alfred Werner, one of the founders of the field of coordination chemistry, prepared a series of platinum complexes that contained ammonia and chloride ions. One of these had the empirical formula $\mathrm{PtCl}_{4} .4 \mathrm{NH}_{3}$ and when reacted with silver nitrate released two chloride ions per formula unit. Write the structural formula of this compound and write the name of this compound.

Draw the possible structures of the metal complex.
\square
What types of isomers can be formed by a compound with this empirical formula?

- 2-Bromo-2-methylpropane reacts with hydroxide ions to give 2-methyl-2-propanol.

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{Br}^{-}
$$

The following rate data were collected at $55^{\circ} \mathrm{C}$.

Experiment	$\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]_{0}(\mathrm{M})$	$\left[\mathrm{OH}^{-}\right]_{0}(\mathrm{M})$	Initial rate $\left(\mathrm{d}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}\right] / \mathrm{dt}, \mathrm{M} \mathrm{s}^{-1}\right)$
1	0.050	0.10	5.0×10^{-4}
2	0.20	0.10	2.0×10^{-3}
3	0.20	0.30	2.0×10^{-3}

Determine the rate law for the reaction.
\square
Calculate the value of the rate constant at $55^{\circ} \mathrm{C}$.
\square
Suggest a possible mechanism for the reaction based on the form of the rate law.
Explain your answer.

The reaction is exothermic. Draw the potential energy vs reaction coordinate diagram for this mechanism, labelling all species that can be isolated.

- A 300.0 mL solution of HCl has a pH of 1.22 . Given that the $\mathrm{p} K_{\mathrm{a}}$ of iodic acid, HIO_{3}, is 0.79 , how many moles of sodium iodate, NaIO_{3}, would need to be added to this solution to raise its pH to 2.00 ?
- The diagram below shows the structure of an oxide of rhenium. The unit cell is cubic with rhenium at each of the corners and oxygen in the centre of each of the edges.

$$
\bullet=\operatorname{Re} \quad 0=0
$$

What is the chemical formula of this oxide?

Answer:
What are the coordination numbers of rhenium and oxygen in this compound?

Re:	O:

There is a large hole at the centre of the cell that in some compounds is occupied by a cation. What is the coordination number of a cation occupying this site?

Given that the density of this oxide is $7.1 \mathrm{~g} \mathrm{~cm}^{-3}$, calculate the length of the cell edge. (The structure is cubic.)

- Complete the following table by drawing the structures of the intermediate and final organic product(s) as required. The intermediate product is formed when the starting material is treated with Reagent 1. The final product is formed when the intermediate product is treated with Reagent 2.

Starting material	Intermediate product	Final product
	Reagent 1: SOCl_{2}	Reagent 2: $\mathrm{CH}_{3} \mathrm{NH}_{2}$

- Consider the amino acid L-cysteine shown below.

Draw the zwitterionic form of L-cysteine.
\qquad
Draw the dipeptide L-cysteinyl-L-cysteine.
\square
Assign the absolute configuration (R or S) of L-cysteine. Show your working.

Draw the enantiomer of L-cysteine.

- Apply your understanding of curly arrows to propose a mechanism for the following reaction.

- Propose a structure for the product of the following reaction. Outline a mechanism for its formation, showing all curly arrows and intermediates.

- Consider the isomer of limonene shown below.

Show the major organic products formed when limonene is treated with excess H_{2} in the presence of a Pd/C catalyst. Pay particular attention to any relevant stereochemistry. Identify which would be the major product and explain why it forms preferentially.
\square
Use Markovnikov's rule to predict the two major products of the reaction between limonene and excess HBr . Draw these isomers and identify the isomeric relationship between them. Specify the optical activity (active or inactive) of each isomer.

At what m / z would the molecular ion of one of these isomers appear in its mass spectrum? Explain your answer.

- For each of the following pairs of compounds, identify which is the stronger acid and give reasons for your choice.

- The bromination of phenol proceeds as follows.

Show the Wheland intermediate for one of these steps and explain why bromination occurs at positions 2, 4 and 6 , but not at positions 3 and 5 .

CHEM1902 - CHEMISTRY 1B (ADVANCED)
 CHEM1904 - CHEMISTRY 1B (SSP)
 DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Permittivity of a vacuum, $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{\mathrm{e}}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{\mathrm{p}}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter
Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$

$$
0^{\circ} \mathrm{C}=273 \mathrm{~K}
$$

$$
1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}
$$

$$
\begin{aligned}
& 1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq} \\
& 1 \mathrm{~Hz}=1 \mathrm{~s}^{-1} \\
& 1 \text { tonne }=10^{3} \mathrm{~kg}
\end{aligned}
$$

$$
1 \AA=10^{-10} \mathrm{~m}
$$

$$
1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}
$$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G
10^{12}	tera	T

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

Standard Reduction Potentials, E°

Reaction
E° / V
$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-} \quad+2.01$
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$
$+1.82$
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq}) \quad+1.72$
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s}) \quad+1.50$
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq}) \quad+1.36$
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad+1.23$
$\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq}) \quad+1.10$
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O} \quad+0.96$
$\operatorname{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \operatorname{Pd}(\mathrm{s}) \quad+0.92$
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s}) \quad+0.80$
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq}) \quad+0.77$
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \quad+0.53$
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \quad+0.34$
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq}) \quad+0.15$
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g}) \quad 0$ (by definition)
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s}) \quad-0.04$
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s}) \quad-0.13$
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s}) \quad-0.14$
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s}) \quad-0.24$
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{s}) \quad-0.28$
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s}) \quad-0.44$
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s}) \quad-0.74$
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s}) \quad-0.76$
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \quad-0.83$
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s}) \quad-0.89$
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s}) \quad-1.68$
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s}) \quad-2.36$
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s}) \quad-2.71$
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s}) \quad-2.87$
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s}) \quad-3.04$

CHEM1902 - CHEMISTRY 1B (ADVANCED)
 CHEM1904 - CHEMISTRY 1B (SSP)

Useful formulas

Thermodynamics \& Equilibrium	Electrochemistry
$\Delta U=q+w=q-p \Delta V$	$\Delta G^{\circ}=-n F E^{\circ}$
$S=\Delta_{\text {sys }} H$	Moles of $e^{-}=I t / F$
$\overline{T_{\text {sys }}}$	$E=E^{\circ}-(R T / n F) \times 2.303 \log Q$
$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$	$=E^{\circ}-(R T / n F) \times \ln Q$
$\Delta G=\Delta G^{\circ}+R T \ln Q$	$E^{\circ}=(R T / n F) \times 2.303 \log K$
$\Delta G^{\circ}=-R T \ln K$	$=(R T / n F) \times \ln K$
$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$	$E=E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right)$
Colligative properties	Quantum Chemistry
$\pi=\mathrm{cRT}$	$E=h \nu=h c / \lambda$
$P_{\text {solution }}=X_{\text {solvent }} \times P^{\circ}{ }_{\text {solvent }}$	$\lambda=h / m v$
$\mathrm{p}=k \mathrm{c}$	$4.5 k_{\mathrm{B}} T=h c / \lambda$
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m$	$E=-Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right)$
$\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m$	$\Delta x \cdot \Delta(m v) \geq h / 4 \pi$
	$q=4 \pi r^{2} \times 5.67 \times 10^{-8} \times T^{4}$
Acids and Bases	Gas Laws
$\mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00$	$P V=n R T$
$\mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00$	$\left(P+n^{2} a / V^{2}\right)(V-n b)=n R T$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\}$	
Radioactivity	Kinetics
$t_{1 / 2}=\ln 2 / \lambda$	$t_{1 / 2}=\ln 2 / k$
$A=\lambda N$	$\mathrm{k}=\mathrm{Ae}^{-\mathrm{E}_{\mathrm{a}} / R T}$
$\ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t$	$\ln [\mathrm{A}]=\ln [\mathrm{A}]_{0}-k t$
${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$	$\ln \frac{k_{2}}{k_{1}}=\frac{E_{\mathrm{a}}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
Miscellaneous	Mathematics
$A=-\log _{10} \frac{I}{I_{0}}$	If $\mathrm{ax}^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$A=\varepsilon c l$	
$E=-A \frac{e^{2}}{4 \pi \varepsilon_{0} r} N_{\mathrm{A}}$	$\ln x=2.303 \log x$

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\begin{gathered} \hline 1 \\ \text { Hyvocen } \\ \mathbf{H} \\ 1.008 \\ \hline \end{gathered}$																	$\begin{gathered} \hline 2 \\ \text { неним } \\ \mathbf{H e} \\ 4.003 \\ \hline \end{gathered}$
$\begin{gathered} 3 \\ \begin{array}{c} \text { цгним } \\ \mathbf{L i} \\ 6.941 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ \begin{array}{c} \text { верицим } \\ \text { Be } \\ 9.012 \end{array} \end{gathered}$											$\begin{gathered} \hline 5 \\ \text { вовом } \\ \mathbf{B} \\ 10.81 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6 \\ \substack{6 \\ \text { савом } \\ \mathbf{C} \\ 12.01 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 7 \\ \substack{\text { strocen } \\ \mathbf{N} \\ 14.01} \end{gathered}$	$\begin{gathered} \hline 8 \\ \begin{array}{c} 8 x \text { oxen } \\ \mathbf{O} \end{array} \\ 16.00 \end{gathered}$	$\begin{gathered} \hline 9 \\ \text { fluone } \\ \mathbf{F} \\ 19.00 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ \text { Neon } \\ \text { Ne } \\ 20.18 \\ \hline \end{gathered}$
$\begin{gathered} \hline 11 \\ \text { sonum } \\ \mathrm{Na} \\ 22.99 \end{gathered}$	$\begin{gathered} \hline 12 \\ \text { масанsum } \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} \hline 13 \\ \text { а.шммnмим } \\ \text { Al } \\ 26.98 \end{gathered}$	$\begin{gathered} \hline 14 \\ \text { surcow } \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \begin{array}{c} \text { phospurus } \\ \mathbf{P} \\ 30.97 \end{array} \end{gathered}$	$\begin{gathered} \hline 16 \\ \substack{\text { sururu } \\ \mathbf{S} \\ 32.07} \end{gathered}$	$\begin{gathered} 17 \\ \text { ch1onise } \\ \text { Cl } \\ 35.45 \end{gathered}$	$\begin{gathered} \hline 18 \\ \text { Aвсо⿱上 } \\ \mathbf{A r} \\ 39.95 \\ \hline \end{gathered}$
$\begin{gathered} \hline 19 \\ \text { porassum } \\ \mathbf{K} \\ 39.10 \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ \text { саистм } \\ \text { Ca } \\ 40.08 \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 \\ \text { scañum } \\ \text { Sc } \\ 44.96 \\ \hline \end{gathered}$	$\begin{gathered} \hline 22 \\ \text { тпмлмм } \\ \mathbf{T i} \\ 47.88 \end{gathered}$	$\begin{gathered} \hline 23 \\ \substack{\text { vanapum } \\ \mathbf{V} \\ 50.94 \\ \hline} \end{gathered}$	$\begin{gathered} 24 \\ \begin{array}{c} \text { cнвомим } \\ \mathbf{C r} \\ 52.00 \end{array} \end{gathered}$	$\begin{gathered} \hline 25 \\ \text { мамаменs } \\ \mathbf{M n} \\ 54.94 \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ \text { ırov } \\ \mathbf{F e} \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 27 \\ \text { соват } \\ \mathbf{C o} \\ 58.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 28 \\ \text { м мскн } \\ \mathbf{N i} \\ 58.69 \\ \hline \end{gathered}$	$\begin{gathered} \hline 29 \\ \text { copres } \\ \mathbf{C u} \\ 63.55 \\ \hline \end{gathered}$	$\begin{gathered} \hline 30 \\ \text { zanc } \\ \mathbf{Z n} \\ 65.39 \\ \hline \end{gathered}$	31 GALLIUM Ga 69.72	$\begin{gathered} \hline 32 \\ \text { севамитм } \\ \mathbf{G e} \\ 72.59 \end{gathered}$	$\begin{gathered} \hline 33 \\ \text { ARsenc } \\ \text { As } \\ 74.92 \\ \hline \end{gathered}$	$\begin{gathered} \hline 34 \\ \text { shenum } \\ \text { Se } \\ 78.96 \\ \hline \end{gathered}$	$\begin{gathered} \hline 35 \\ \text { вRoмine } \\ \mathbf{B r} \\ 79.90 \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ \text { квуртом } \\ \mathbf{K r} \\ 83.80 \\ \hline \end{gathered}$
$\begin{gathered} \hline \begin{array}{c} 37 \\ \text { Rungum } \\ \mathbf{R b} \\ 85.47 \end{array} \end{gathered}$	$\begin{gathered} \hline 38 \\ \substack{\text { stonтuм } \\ \mathbf{S r} \\ 87.62} \end{gathered}$	$\begin{gathered} \hline 39 \\ \text { yтrитм } \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \text { zırconum } \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} \hline 41 \\ \text { моовим } \\ \text { Nb } \\ 92.91 \\ \hline \end{gathered}$	42 моиввеким Mo 95.94	$\begin{gathered} \hline 43 \\ \text { тесниетим } \\ \mathbf{T c} \\ {[98.91]} \end{gathered}$	$\begin{gathered} 44 \\ \begin{array}{c} \text { Ruтненмм } \\ \mathbf{R u} \\ 101.07 \end{array} \end{gathered}$	$\begin{gathered} \hline 45 \\ \text { Rногтм } \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} \hline 46 \\ \text { райапим } \\ \mathbf{P d} \\ 106.4 \end{gathered}$	$\begin{gathered} \hline 47 \\ \text { sulver } \\ \mathbf{A g} \\ 107.87 \\ \hline \end{gathered}$	$\begin{gathered} \hline 48 \\ \substack{\text { салиим } \\ \mathbf{C d} \\ 112.40} \end{gathered}$	$\begin{gathered} \hline 49 \\ \text { мnvum } \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} \hline 50 \\ \text { тім } \\ \text { Sn } \\ 118.69 \end{gathered}$	$\begin{gathered} \hline 51 \\ \text { ANTIMNy } \\ \text { Sb } \\ 121.75 \\ \hline \end{gathered}$	$\begin{gathered} 52 \\ \begin{array}{c} \text { тешиним } \\ \text { Te } \\ 127.60 \end{array} \end{gathered}$	$\begin{gathered} 53 \\ \substack{\text { tonne } \\ \text { I }} \\ 126.90 \end{gathered}$	$\begin{gathered} 54 \\ \begin{array}{c} \text { xexow } \\ \mathbf{X e} \\ 131.30 \end{array} \end{gathered}$
$\begin{gathered} \hline 55 \\ \text { cassum } \\ \text { Cs } \\ 132.91 \\ \hline \end{gathered}$	$\begin{gathered} \hline 56 \\ \text { BARuм } \\ \mathbf{B a} \\ 137.34 \\ \hline \end{gathered}$	57-71	$\begin{gathered} \hline 72 \\ \text { панемим } \\ \mathbf{H f} \\ 178.49 \\ \hline \end{gathered}$	$\begin{gathered} 73 \\ \text { талтаим } \\ \mathbf{T a} \\ 180.95 \\ \hline \end{gathered}$	$\begin{gathered} \hline 74 \\ \substack{74 \\ \text { tungrin }} \\ \mathbf{W} \\ 183.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 75 \\ \text { Rнелим } \\ \mathbf{R e} \\ 186.2 \end{gathered}$	$\begin{gathered} 76 \\ \text { овмим } \\ \text { Os } \\ 190.2 \end{gathered}$	$\begin{gathered} \hline 77 \\ \text { renwum } \\ \text { Ir } \\ 192.22 \\ \hline \end{gathered}$		$\begin{gathered} 79 \\ \text { cold } \\ \mathbf{A u} \\ 196.97 \\ \hline \end{gathered}$	$\begin{gathered} \hline 80 \\ \text { мRRCury } \\ \mathbf{H g} \\ 200.59 \\ \hline \end{gathered}$	$\begin{gathered} \hline 81 \\ \text { тианим } \\ \text { Tl } \\ 204.37 \end{gathered}$	$\begin{gathered} \hline 82 \\ \text { LEAD } \\ \text { Pb } \\ 207.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 83 \\ \text { BIswurf } \\ \mathbf{B i} \\ 208.98 \\ \hline \end{gathered}$	$\begin{gathered} \hline 84 \\ \text { poonvum } \\ \mathbf{P o} \\ {[210.0]} \\ \hline \end{gathered}$	$\begin{gathered} 85 \\ \text { Aлtatine } \\ \text { At } \\ {[210.0]} \\ \hline \end{gathered}$	$\begin{gathered} 86 \\ \begin{array}{c} 86 \text { Ran } \\ \mathbf{R n} \\ {[222.0]} \end{array} \\ \hline \end{gathered}$
$\begin{gathered} \hline 87 \\ \text { freancum } \\ \mathbf{F r} \\ {[223.0]} \end{gathered}$	$\begin{gathered} \hline 88 \\ \begin{array}{c} 8 \text { Ronum } \\ \mathbf{R a} \\ {[226.0]} \end{array} \end{gathered}$	89-103	104 еurterforuuм $\mathbf{R f}$ $[261]$	$\begin{aligned} & \hline 105 \\ & \text { nuвлum } \\ & \text { Db } \\ & {[262]} \end{aligned}$	$\begin{gathered} \hline 106 \\ \text { seabogaium } \\ \mathbf{S g} \\ {[266]} \end{gathered}$	$\begin{gathered} \hline 107 \\ \text { вонким } \\ \mathbf{B h} \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 108 \\ \text { Hassum } \\ \text { Hs } \\ {[265]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 109 \\ \text { мепппRum } \\ \mathbf{M t} \\ {[266]} \\ \hline \end{gathered}$	110 DaRMsraotum Ds $[271]$	111 $\substack{\text { roелтеним } \\ \mathbf{R g} \\ [272]}$							

LANTHANOIDS	$\begin{gathered} 57 \\ \text { Lамтнамм } \\ \text { La } \\ 138.91 \end{gathered}$	$\begin{gathered} 58 \\ \text { cerum } \\ \text { Ce } \\ 140.12 \end{gathered}$	59 prasoopmum $\mathbf{P r}$ 140.91	$\begin{gathered} \begin{array}{c} 60 \\ \text { меормим } \\ \text { Nd } \\ 144.24 \end{array} \end{gathered}$	$\begin{gathered} \begin{array}{c} 61 \\ \text { роомпним } \\ \mathbf{P m} \\ {[144.9]} \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 62 \\ \text { samarum } \\ \text { Sm } \\ 150.4 \\ \hline \end{gathered}$	63 Europum $\mathbf{E u}$ 151.96	$\begin{gathered} \hline 64 \\ \text { c:aонимм } \\ \text { Gd } \\ 157.25 \\ \hline \end{gathered}$	$\begin{gathered} \hline 65 \\ \text { тевним } \\ \text { Tb } \\ 158.93 \\ \hline \end{gathered}$	66 mysposum Dy 162.50	$\begin{gathered} \hline 67 \\ \text { номимм } \\ \mathbf{H o} \\ 164.93 \\ \hline \end{gathered}$	$\begin{gathered} 68 \\ \text { еввим } \\ \mathbf{E r} \\ 167.26 \\ \hline \end{gathered}$	$\begin{gathered} \hline 69 \\ \text { тиним } \\ \mathbf{T m} \\ 168.93 \\ \hline \end{gathered}$	$\begin{gathered} 70 \\ \substack{7 \text { мтввимм } \\ \mathbf{Y b} \\ 173.04 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 71 \\ \text { цитвтим } \\ \mathbf{L u} \\ 174.97 \\ \hline \end{gathered}$
ACTINOIDS	$\begin{gathered} 89 \\ \underset{\text { мстмим }}{\text { Ac }} \\ {[227.0]} \end{gathered}$	$\begin{gathered} \hline 90 \\ \text { тновuм } \\ \text { Th } \\ 232.04 \end{gathered}$	91 $\left.\begin{array}{c}\text { protactinum } \\ \mathbf{P a} \\ {[231.0]}\end{array}\right]$	$\begin{gathered} \hline 92 \\ \text { URanum } \\ \mathbf{U} \\ 238.03 \end{gathered}$	$\begin{gathered} 93 \\ \begin{array}{c} 9 \text { nepunuм } \\ \text { Np } \\ {[237.0]} \end{array} \end{gathered}$	$\begin{gathered} 94 \\ \text { p.uronum } \\ \mathbf{P u} \\ {[239.1]} \end{gathered}$	$\begin{gathered} 95 \\ \text { Амепестм } \\ \text { Am } \\ \text { [243.1] } \end{gathered}$	$\begin{gathered} 96 \\ \text { curvum } \\ \text { C247.1] } \end{gathered}$	$\begin{gathered} 97 \\ \text { вегкциим } \\ \mathbf{B k} \\ {[247.1]} \end{gathered}$	98 californum Cf $[252.1]$	99 enstrenum Es $[252.1]$	$\begin{gathered} \substack{100 \\ \text { ененим } \\ \text { Fm } \\ [257.1]} \end{gathered}$	101 $\substack{\text { меприегuм } \\ \text { Md } \\[256.1]}$	$\begin{gathered} 102 \\ \begin{array}{c} \text { мовним } \\ \text { No } \\ {[259.1]} \end{array} \end{gathered}$	$\begin{gathered} 103 \\ \text { LАیвहсаим } \\ \mathbf{L r} \\ {[260.1]} \end{gathered}$

