Click on the links for resources on each topic.

2006-J-2:

- Bonding in $\mathrm{H}_{2}-\mathrm{MO}$ theory
- Bonding in $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{CH}_{2} \mathrm{O}$
- Band Theory - MO in Solids

2006-J-3:

- Nuclear and Radiation Chemistry
- Wave Theory of Electrons and Resulting Atomic Energy Levels

2006-J-4:

- Ionic Bonding

2006-J-5:

- Bonding in $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{CH}_{2} \mathrm{O}$

2006-J-6:

- Lewis Structures
- VSEPR
- Wave Theory of Electrons and Resulting Atomic Energy Levels

2006-J-7:

- Thermochemistry
- First and Second Law of Thermodynamics
- Nitrogen in the Atmosphere

2006-J-8:

- Thermochemistry

2006-J-9:

- Equilibrium and Thermochemistry in Industrial Processes

2006-J-10:

- Electrochemistry

2006-J-11:

- Electrolytic Cells

2006-J-12:

- First and Second Law of Thermodynamics

CHEMISTRY 1A (ADVANCED) - CHEM1901

CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) - CHEM1903

CONFIDENTIAL

JUNE 2006
TIME ALLOWED: THREE HOURS
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY		SID	
NAME		NUMBER	
OTHER		TABLE	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 23 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 19, 23, 24 and 28 are for rough

Page	Marks			Marker
	Max	Gained		
14	6			
15	8			
16	3			
17	4			
18	6			
20	7			
21	4			
22	4			
25	3			
26	6			
27	5			
Total	56			

- In the spaces provided, explain the meaning of the following terms. You may use an example, equation or diagram where appropriate.
(a) Pauli exclusion principle
(b) electronegativity
(c) ionic bond
(d) paramagnetic
(e) n-type semiconductor
(e) σ bond
- Balance the following nuclear reactions by identifying the missing nuclide.

- Identify the decay mechanism for the following three unstable nuclides given that the only stable isotopes of Pr and Eu are ${ }_{59}^{141} \mathrm{Pr},{ }_{63}^{151} \mathrm{Eu}$ and ${ }_{63}^{153} \mathrm{Eu}$. There are no stable isotopes of Rn .

Isotope	Nuclear Decay Mechanism
${ }_{59}^{122} \mathrm{Pr}$	
${ }_{63}^{150} \mathrm{Eu}$	
${ }^{222} \mathrm{Rn}$	

- Identify two specific features of atomic structure that can only be explained by reference to the wave-like nature of electrons. Give reasons.
- The ionic solids $\mathrm{NaCl}, \mathrm{LiF}, \mathrm{KF}$ and LiCl , all have the same crystal structure.

Assuming only electrostatic interactions are involved, use the information below to organise these four ionic solids in order of increasing energy of the crystal lattice.

ion	radius $\left(10^{-12} \mathrm{~m}\right)$	ion	radius $\left(10^{-12} \mathrm{~m}\right)$
Li^{+}	76	$\mathrm{~F}^{-}$	133
Na^{+}	102	Cl^{-}	181
$\mathrm{~K}^{+}$	138		

Working

Increasing energy of the crystal lattice \rightarrow

- Explain why $\mathrm{CsCl}, \mathrm{NaCl}$ and ZnS have different crystal structures.
- The molecular orbital energy level diagram below is for the valence electrons of the

Marks
4

Indicate the ground state electronic configuration of $\mathrm{O}_{2}{ }^{+}$using the arrow notation for electron spins on the provided molecular orbital energy level diagram.

Calculate the bond order of $\mathrm{O}_{2}{ }^{+}$.

Indicate the lowest energy electron excitation in this ion by identifying the initial and final molecular states of the electron undergoing the excitation.

- Consider the molecule whose structure is shown below. Complete the table concerning the atoms \mathbf{A}, \mathbf{B} and \mathbf{C} indicated by the arrows.

Selected atom	Number of lone pairs about the selected atom	Number of σ-bonds associated with the selected atom	Geometry of σ-bonds about the selected atom
A			
B			
C			

- Calculate the energy (in J) and the wavelength (in nm) of the photon of radiation emitted when the electron in Be^{3+} drops from an $n=3$ state to an $n=2$ state.

Energy =	Wavelength =

- Write the equation whose enthalpy change represents the standard enthalpy of formation of hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})$.

Write the equation whose enthalpy change represents the enthalpy of combustion of hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})$ to produce water vapour.

Given the following data, calculate the standard enthalpy of formation of $\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})$.

$$
\begin{aligned}
& \Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right)=-242 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta H_{\mathrm{comb}}^{\circ}\left(\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})\right)=-580 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

\square

- Estimate the temperature of Mars given its radius of 3400 km and the solar power
density at its surface of $590 \mathrm{~J} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$. Assume an average albedo of 16% and zero Greenhouse effect.

Answer:

- In an experiment, 1.76 g of sodium nitrate was dissolved in water inside a calorimeter. Give a balanced equation for the reaction that took place.

Marks
 4

The temperature of the solution was found to decrease by $1.22{ }^{\circ} \mathrm{C}$. If the heat capacity of the calorimeter was $77.0 \mathrm{~J} \mathrm{~K}^{-1}$ and the heat capacity of the solution was $268 \mathrm{~J} \mathrm{~K}^{-1}$, determine the molar heat of reaction.

How long would it take a 250 W power supply to reheat the calorimeter to its starting temperature?

- At 773 K , the following reaction has an equilibrium constant, K_{p}, of $1.52 \times 10^{-5} \mathrm{~atm}^{-2}$.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \rightleftharpoons \quad 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

If 0.0200 mol of ammonia were introduced into an evacuated 1.00 L container at 773 K , what would be the partial pressures of $\mathrm{N}_{2}, \mathrm{H}_{2}$ and NH_{3} at equilibrium?
\square

- Refer to the electrochemical potentials on the data sheet.

Show that $\mathrm{Fe}^{2+}(\mathrm{aq})$ is not stable under $1 \mathrm{~atm} \mathrm{O}_{2}$ in a 1 M solution of HCl . What happens to Fe^{2+} ?

Show $\mathrm{Fe}(\mathrm{s})$ is stabilised by galvanizing with $\mathrm{Zn}(\mathrm{s})$.
\square
Show $\mathrm{Cu}^{+}(\mathrm{aq})$ is not stable in water. What would happen to $\mathrm{Cu}^{+}(\mathrm{aq})$?

- In the chlor-alkali process $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{OH}^{-}(\mathrm{aq})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$ are produced by the electrolysis of a concentrated solution of sodium chloride. Explain how hydrogen gas is produced at the cathode, and why chlorine gas rather than oxygen gas forms at the anode.

A chlor-alkali plant produces 42.3 tonne of Cl_{2} per day. Calculate the minimum current used. (1 tonne $=1000 \mathrm{~kg}$)

Answer:

Calculate the amount of H_{2} produced (in mol) and estimate the daily energy available to the plant through combustion of this hydrogen. $\quad \Delta H^{\circ}{ }_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right)=-242 \mathrm{~kJ} \mathrm{~mol}^{-1}$

[^0]- State the Second Law of Thermodynamics, and explain how the enthalpy of reaction is related to the entropy change of the surroundings.

Give an example of a chemical reaction or a chemical process that corresponds to each of the following.
$\Delta S>0, \Delta H>0$

$$
\Delta S>0, \Delta H<0
$$

\square

$$
\Delta S<0, \Delta H<0
$$

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J}$ s
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{e}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{\mathrm{p}}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Standard Reduction Potentials, E°

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$	+1.72
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$	+1.50
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	+1.23
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$	+0.96
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd}(\mathrm{s})$	+0.92
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}{ }^{2+}(\mathrm{aq})$	+0.15
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}(\mathrm{g})$	$0(\mathrm{by} \mathrm{definition})$
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.04
$\mathrm{~Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.24
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.74
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.76
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}(\mathrm{g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.83
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.36
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$	-2.71
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s})$	-2.87
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	-3.04

CHEM1901 - CHEMISTRY 1A (ADVANCED)

CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Useful formulas

Quantum Chemistry	Electrochemistry
$E=h \nu=h c / \lambda$	$\Delta G^{\circ}=-n F E^{\circ}$
$\lambda=h / m v$	Moles of $e^{-}=I t / F$
$4.5 k_{\mathrm{B}} T=h c / \lambda$	$E=E^{\circ}-(R T / n F) \times 2.303 \log Q$
$E=Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right)$	$E^{\circ}-(R T / n F) \times \ln Q$
$\Delta x \cdot \Delta(m v) \geq h / 4 \pi$	
$q=4 \pi r^{2} \times 5.67 \times 10^{-8} \times T^{4}$	$\quad=(R T / n F) \times 2.303 \log K$
	$E=E^{\circ}-\frac{0.0592}{n} \log Q\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$

PERIODIC TABLE OF THE ELEMENTS

$\begin{aligned} & \text { O} \\ & \text { N } \\ & 0 \\ & 0 \end{aligned}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	$\begin{gathered} \mathbf{1 8} \\ \hline \end{gathered}$
	$\begin{array}{\|c} \substack{1 \\ \text { wrocerex } \\ \mathbf{H} \\ 1.008} \end{array}$																	
	$\begin{gathered} \begin{array}{c} 3 \\ \text { Lnmun } \\ \mathrm{Li} \\ 6.941 \end{array} \end{gathered}$	$\begin{gathered} \hline 4 \\ \hline \text { пенинuм } \\ \text { Be } \\ 9.012 \\ \hline \end{gathered}$											$\begin{gathered} \hline 5 \\ \hline \text { nonov } \\ \mathbf{B} \\ 10.81 \\ \hline \end{gathered}$		$\begin{gathered} \hline 7 \\ \substack{7 \\ \text { minocex } \\ \mathbf{N} \\ 14.01 \\ \hline \\ \hline} \end{gathered}$	$\begin{gathered} 8 \\ \begin{array}{c} \text { oxxeex } \\ \mathbf{O} \\ \mathbf{O} .00 \end{array} \end{gathered}$	$\begin{gathered} 9 \\ \hline \text { nuvens } \\ \mathbf{F} \\ 19.00 \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ \text { Nrow } \\ \text { Ne } \\ 20.18 \\ \hline \end{gathered}$
	$\begin{gathered} \hline 11 \\ \hline \text { sonum } \\ \text { Na } \\ 22.99 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ \substack{\text { мacesum } \\ \mathbf{M g} \\ 24.31 \\ \hline} \\ \hline \end{gathered}$											$\begin{array}{r} \hline 13 \\ \text { aumunum } \\ \text { Al } \\ 26.98 \\ \hline \end{array}$	$\begin{gathered} 14 \\ \text { sulcow } \\ \text { Si } \\ 28.09 \\ \hline \end{gathered}$		$\begin{gathered} \hline 16 \\ \text { sutrun } \\ \text { S } \\ 32.07 \\ \hline \end{gathered}$		$\begin{gathered} 18 \\ \text { Ancour } \\ \text { Ar } \\ 39.95 \\ \hline \end{gathered}$
$\stackrel{\text { No }}{\stackrel{\rightharpoonup}{2}}$	$\begin{array}{\|c} \hline 19 \\ \text { porsusum } \\ \mathbf{K} \\ 39.10 \\ \hline \end{array}$	$\begin{gathered} 20 \\ \text { cancum } \\ \text { Ca } \\ 40.08 \end{gathered}$	$\begin{gathered} \hline 21 \\ \begin{array}{c} \text { scanoum } \\ \text { Sc } \\ 44.96 \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ~ \end{gathered}$	$\begin{gathered} \hline 22 \\ \text { mixum } \\ \mathrm{Ti} \\ 47.88 \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ \substack{\text { vanumum } \\ \mathbf{v} \\ 50.94} \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ \text { cunomun } \\ \mathbf{C r} \\ \text { Cr.00 } \\ \hline \end{gathered}$	$\begin{gathered} \hline 25 \\ \text { mancunse } \\ \text { Mn } \\ 54.94 \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ \text { neov } \\ \text { Fe } \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ \text { comar } \\ \text { Co } \\ 58.93 \end{gathered}$	$\begin{gathered} \hline 28 \\ \text { Nexal } \\ \text { Ni } \\ 58.69 \end{gathered}$	$\begin{gathered} 29 \\ \text { copres } \\ \text { Cu } \\ 63.55 \end{gathered}$	$\begin{gathered} 300 \\ \text { 2nc } \\ \mathbf{Z n .} \\ 65.39 \end{gathered}$	$\begin{gathered} \hline 31 \\ \text { canum } \\ \text { Ga } \\ 69.72 \\ \hline \end{gathered}$		$\begin{gathered} \hline 33 \\ \text { nesenc } \\ \text { As } \\ 74.92 \\ \hline \end{gathered}$	$\begin{gathered} \hline 34 \\ \substack{\text { surusum } \\ \text { Se } \\ 78.96 \\ \hline} \end{gathered}$	$\begin{gathered} 35 \\ \hline \text { nemumes } \\ \mathbf{B r} \\ 79.90 \\ \hline \end{gathered}$	$\begin{gathered} \hline 36 \\ \text { kexron } \\ \text { Kr } \\ 83.80 \\ \hline \end{gathered}$
$\sum_{i=1}^{8}$	$\begin{gathered} 37 \\ \text { Renumum } \\ \text { Rb } \\ 85.47 \end{gathered}$	$\begin{gathered} \hline 38 \\ \substack{\text { sпnomun } \\ \text { Sr } \\ 87.62 \\ 87.62 \\ \hline} \end{gathered}$		$\begin{gathered} 40 \\ \begin{array}{c} 410 \text { zenum } \\ \mathbf{Z r} \\ 91.22 \\ 9 \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 41 \\ & \text { Monown } \\ & \text { Nb } \\ & 92.91 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 42 \\ \text { molvanewn } \\ \text { Mo } \\ 95.94 \\ \hline \end{gathered}$	$\begin{gathered} \hline 43 \\ \text { rucumerum } \\ \text { Tc } \\ {[98.91]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 44 \\ \text { мunumen } \\ \mathbf{R u} \\ 101.07 \\ \hline \end{gathered}$	$\begin{gathered} \hline 45 \\ \text { nenown } \\ \text { Rh } \\ \text { R102.91 } \\ \hline \end{gathered}$	$\begin{gathered} 46 \\ \text { puncum } \\ \text { Pd } \\ 106.4 \\ \hline \end{gathered}$	$\begin{gathered} \hline 47 \\ \text { sunver } \\ \mathbf{A g} \\ 107.87 \\ \hline \end{gathered}$		$\begin{gathered} \hline 49 \\ \text { nown } \\ \text { In } \\ \text { 114.82 } \\ \hline \end{gathered}$		$\begin{gathered} \begin{array}{c} \text { Artwown } \\ \text { Nu } \\ \text { Sb } \\ 121.75 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \hline 52 \\ \text { rıuwn } \\ \text { Te } \\ 127.60 \\ \hline \end{gathered}$	$\begin{gathered} 53 \\ \text { Lomene } \\ \text { I } \\ 126.90 \\ \hline \end{gathered}$	$\begin{gathered} 54 \\ \text { xntow } \\ \mathbf{X e} \\ 131.30 \\ \hline \end{gathered}$
U	$\begin{array}{\|c} \hline 55 \\ \text { cascum } \\ \text { Cs } \\ 132.91 \\ \hline \end{array}$	$\begin{gathered} \hline 56 \\ \text { nexum } \\ \text { Ba } \\ \text { Ba } \\ \hline 137.34 \\ \hline \end{gathered}$	57－71	$\begin{gathered} \hline \begin{array}{c} 72 \\ \text { numum } \\ \text { Hf } \\ 178.49 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \hline 73 \\ \text { танани } \\ \text { Ta } \\ 180.95 \\ \hline \end{gathered}$	$\begin{gathered} \hline 74 \\ \substack{\text { rucstrev } \\ \mathbf{W} \\ 183.85 \\ \hline \\ \hline} \\ \hline \end{gathered}$	$\begin{gathered} \hline 75 \\ \text { nunven } \\ \text { Re } \\ 186.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 76 \\ \text { (osmum } \\ \text { Os } \\ 190.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 77 \\ \text { nemum } \\ \text { Ir } \\ 192.22 \\ \hline \end{gathered}$	$\begin{gathered} \hline 78 \\ \hline \text { puntrun } \\ \mathbf{P t} \\ 195.09 \\ \hline \end{gathered}$	$\begin{gathered} \hline 79 \\ \text { coun } \\ \text { cuu } \\ 196.97 \\ \hline \end{gathered}$		$\begin{gathered} \hline 81 \\ \text { manum } \\ \text { Tl } \\ 204.37 \\ \hline \end{gathered}$	$\begin{gathered} \hline 82 \\ \hline \text { Lan } \\ \text { Pb } \\ 207.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 83 \\ \text { mesurn } \\ \mathbf{B i} \\ 208.98 \\ \hline \end{gathered}$	84 poowne Po ［210．0］	85 85 stanne At $[210.0]$	$\begin{gathered} 86 \\ \text { Renow } \\ \mathbf{R n} \\ {[222.0]} \\ \hline \end{gathered}$
	$\begin{gathered} 87 \\ \begin{array}{c} 8 \text { nancum } \\ \text { Fr } \\ {[223.0]} \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 88 \\ \text { Renoum } \\ \text { Ra } \\ \text { [226.0] } \\ \hline \end{gathered}$	89－103	109 Urueremen Rf $[261]$	$\begin{aligned} & 105 \\ & \text { numumum } \\ & \text { Db } \\ & {[262]} \\ & \hline \end{aligned}$	$\begin{gathered} 106 \\ \text { stanocranum } \\ \text { Sg } \\ {[266]} \\ \hline \end{gathered}$	$\begin{aligned} & \begin{array}{c} \text { sonerum } \\ \text { s.encu } \\ \text { Bh } \\ {[262]} \end{array} \end{aligned}$	$\begin{aligned} & 1108 \\ & \text { nussum } \\ & \text { Hs } \\ & {[265]} \\ & \hline \end{aligned}$										

[^0]: Answer:

