Topics in the June 2006 Exam Paper for CHEM1903

Click on the links for resources on each topic.

2006-J-2:

- Bonding in H₂ MO theory
- Bonding in O2, N2, C2H2, C2H4 and CH2O
- Band Theory MO in Solids

2006-J-3:

- Nuclear and Radiation Chemistry
- Wave Theory of Electrons and Resulting Atomic Energy Levels

2006-J-4:

• Ionic Bonding

2006-J-5:

Bonding in O₂, N₂, C₂H₂, C₂H₄ and CH₂O

2006-J-6:

- Lewis Structures
- VSEPR
- Wave Theory of Electrons and Resulting Atomic Energy Levels

2006-J-7:

- Thermochemistry
- First and Second Law of Thermodynamics
- Nitrogen in the Atmosphere

2006-J-8:

Thermochemistry

2006-J-9:

• Equilibrium and Thermochemistry in Industrial Processes

2006-J-10:

Electrochemistry

2006-J-11:

• Electrolytic Cells

2006-J-12:

• First and Second Law of Thermodynamics

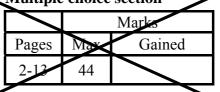
The University of Sydney

<u>CHEMISTRY 1A (ADVANCED) - CHEM1901</u> <u>CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) - CHEM1903</u>

CONFIDENTIAL

JUNE 2006

TIME ALLOWED: THREE HOURS


GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 23 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 19, 23, 24 and 28 are for rough working only.

OFFICIAL USE ONLY Multiple choice section

Short answer section

		Marks		
Page	Max	Gained		Marker
14	6			
15	8			
16	3			
17	4			
18	6			
20	7			
21	4			
22	4			
25	3			
26	6			
27	5			
Total	56			_

• In the spaces provided, explain the meaning of the follow example, equation or diagram where appropriate.	wing terms. You may use an
(a) Pauli exclusion principle	
(b) electronegativity	
(c) ionic bond	
(d) paramagnetic	
(e) n-type semiconductor	
e) ii-type semiconductor	
(a) = h a r d	
(e) σ bond	

Marks

3

3

• Balance the following nuclear reactions by identifying the missing nuclide.

⁵⁵₂₆Fe

	0			
+	řе	\rightarrow		

$$^{63}_{28}$$
Ni \rightarrow $^{63}_{29}$ Cu +

$$^{28}_{14}\text{Si} + ^{2}_{1}\text{H} \rightarrow ^{1}_{0}\text{n} +$$

• Identify the decay mechanism for the following three unstable nuclides given that the only stable isotopes of Pr and Eu are $^{141}_{59}$ Pr, $^{151}_{63}$ Eu and $^{153}_{63}$ Eu. There are no stable isotopes of Rn.

Isotope	Nuclear Decay Mechanism
¹⁴² ₅₉ Pr	
¹⁵⁰ ₆₃ Eu	
²²² ₈₆ Rn	

• Identify two specific features of atomic structure that can only be explained by reference to the wave-like nature of electrons. Give reasons.

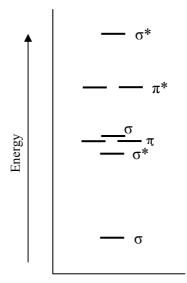
2

1

• The ionic solids NaCl, LiF, KF and LiCl, all have the same crystal structure. Assuming only electrostatic interactions are involved, use the information below to organise these four ionic solids in order of increasing energy of the crystal lattice.

ion	radius (10 ⁻¹² m)	ion	radius (10 ⁻¹² m)
Li ⁺	76	F^-	133
Na ⁺	102	Cl ⁻	181
K ⁺	138		

	K	138				
Working						
Working						
Increasing ene	erov of the	e crystal lattice →				
mereasing ene	l gy of the	e erystar fattice 7				
• Explain wh	y CsCl, N	NaCl and ZnS have di	fferent cry	stal structure	s.	


22/45(a) Marks

4

• The molecular orbital energy level diagram below is for the valence electrons of the O_2^+ ion.

2006-J-5

Indicate the ground state electronic configuration of O_2^+ using the arrow notation for electron spins on the provided molecular orbital energy level diagram.

Calculate the bond order of O_2^+ .

Indicate the lowest energy electron excitation in this ion by identifying the initial and final molecular states of the electron undergoing the excitation.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

• Consider the molecule whose structure is shown below. Complete the table concerning the atoms **A**, **B** and **C** indicated by the arrows.

Marks 3

$$\begin{array}{c|c}
A & C \\
H & H & O \\
C = C & C & N = C - C - NH_{2}
\end{array}$$

$$\begin{array}{c|c}
C & C & H & A & C \\
H & H & H & A & C \\
R & R & C & R & R$$

Selected atom	Number of lone pairs about the selected atom	Number of σ-bonds associated with the selected atom	Geometry of σ-bonds about the selected atom
A			
В			
С			

• Calculate the energy (in J) and the wavelength (in nm) of the photon of radiation emitted when the electron in Be³⁺ drops from an n = 3 state to an n = 2 state.

3

Energy =

Wavelength =

•	Write the equation whose enthalpy change represents the standard enthalpy of
	formation of hydrazine, $N_2H_4(g)$.

Marks 4

Write the equation whose enthalpy change represents the enthalpy of combustion of hydrazine, N₂H₄(g) to produce water vapour.

Given the following data, calculate the standard enthalpy of formation of $N_2H_4(g)$.

$$\Delta H^{\circ}_{f}(H_{2}O(g)) = -242 \text{ kJ mol}^{-1}$$

$$\Delta H^{\circ}_{comb} (N_2 H_4(g)) = -580 \text{ kJ mol}^{-1}$$

Answer:

• Estimate the temperature of Mars given its radius of 3400 km and the solar power density at its surface of 590 J m⁻² s⁻¹. Assume an average albedo of 16% and zero Greenhouse effect.

3

Answer:

CHEM1901/1903 2006-J-8 June 2006 22/45(a)

		Marks
•	In an experiment, 1.76 g of sodium nitrate was dissolved in water inside a calorimeter. Give a balanced equation for the reaction that took place.	4
		<u> </u>
	The temperature of the solution was found to decrease by 1.22 °C. If the heat capacity of the calorimeter was 77.0 J $\rm K^{-1}$ and the heat capacity of the solution was 268 J $\rm K^{-1}$, determine the molar heat of reaction.	
	1	_
	Answer:	
	How long would it take a 250 W power supply to reheat the calorimeter to its starting temperature?	

• At 773 K, the following reaction has an equilibrium constant, K_p , of 1.52×10^{-5} atm⁻².

Marks 4

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

If 0.0200 mol of ammonia were introduced into an evacuated 1.00 L container at 773 K, what would be the partial pressures of N_2 , H_2 and NH_3 at equilibrium?

Refer to the electrochemical potentials on the data sheet.	Marks
Show that $Fe^{2+}(aq)$ is not stable under 1 atm O_2 in a 1 M solution of HCl. What happens to Fe^{2+} ?	3
nappens to Fe ?	
Show Fe(s) is stabilised by galvanizing with Zn(s).	
Show Cu ⁺ (aq) is not stable in water. What would happen to Cu ⁺ (aq)?	

CHEM1901/1903 2006-J-11 June 2006 22/45(a)

•	In the chlor-alkali process $H_2(g)$, $OH^-(aq)$ and $Cl_2(g)$ are produced by the electrolysis of a concentrated solution of sodium chloride. Explain how hydrogen gas is produced at the cathode, and why chlorine gas rather than oxygen gas forms at the anode.	Marks 6
	A chlor-alkali plant produces 42.3 tonne of Cl_2 per day. Calculate the minimum current used. (1 tonne = 1000 kg)	
	Answer:	
	Calculate the amount of H_2 produced (in mol) and estimate the daily energy available to the plant through combustion of this hydrogen. $\Delta H^{\circ}_{f}(H_2O(g)) = -242 \text{ kJ mol}^{-1}$	
	Answer:	-

•	State the Second Law of Thermodynamics, and explain how the enthalpy of reaction is related to the entropy change of the surroundings.								
	Give an example of a chemical reaction or a chemical process that corresponds to each of the following.								
	$\Delta S > 0, \Delta H > 0$								
	$\Delta S > 0, \ \Delta H < 0$								
	$\Delta S < 0, \Delta H < 0$								

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \, \mathrm{J \, K^{-1}}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_n = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and $0 \,^{\circ}\text{C} = 22.4 \,^{\circ}\text{L}$

Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

$$1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa}$$

$$0 \, ^{\circ}\text{C} = 273 \, \text{K}$$

$$1 L = 10^{-3} \text{ m}^3$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

Deci	mal fract	ions	Deci	Decimal multiples						
Fraction	Fraction Prefix		Multiple	Prefix	Symbol					
10^{-3}	milli	m	10^{3}	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	M					
10^{-9}	nano	n	10^{9}	giga	G					
10^{-12}	pico	p								

22/45(b) June 2006

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Standard Reduction Potentials, E°

Reaction	E° / V
$Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq)$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$\text{Cl}_2 + 2\text{e}^- \rightarrow 2\text{Cl}^-(\text{aq})$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^{+}(aq) + e^{-} \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\text{Sn}^{4+}(\text{aq}) + 2e^{-} \rightarrow \text{Sn}^{2+}(\text{aq})$	+0.15
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}(\operatorname{s})$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Cr^{3+}(aq) + 3e^- \rightarrow Cr(s)$	-0.74
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Cr^{2^+}(aq) + 2e^- \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^- \rightarrow Ca(s)$	-2.87
$Li^{+}(aq) + e^{-} \rightarrow Li(s)$	-3.04

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	$Moles\ of\ e^- = It/F$
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$E = Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{1/2} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P_{\text{solvent}}^{\circ}$	$k = Ae^{-Ea/RT}$
p = kc	$ ln[A] = ln[A]_o - kt $
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2$
Radioactivity	Thermodynamics & Equilibrium
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_{\rm t}) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 $\ln(A_0/A_t)$	$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$
Polymers	Mathematics
$R_{ m g}=\sqrt{rac{nl_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	$ \ln x = 2.303 \log x $

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1]																2
HYDROGEN H																	нелим Не
1.008																	4.003
3	4											5	6	7	8	9	10
LITHIUM T •	BERYLLIUM											BORON	CARBON	NITROGEN T	OXYGEN	FLUORINE	NEON T.
Li	Be											В	C	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11 sodium	12 magnesium											13 ALUMINIUM	14 SILICON	15 PHOSPHORUS	16 SULFUR	17 CHLORINE	18 argon
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38 STRONTIUM	39	40 zirconium	41	42	43 TECHNETIUM	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM Rb	Sr	YTTRIUM	Zr	NIOBIUM Nb	MOLYBDENUM Mo	Tc	RUTHENIUM Ru	RHODIUM Rh	PALLADIUM Pd	$\mathbf{A}\mathbf{g}$	CADMIUM	Indium In	Sn	Sb	Tellurium Te	IODINE	XENON Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM	0,,1	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
Cs	Ba		Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103		105	106	107	108	109									
FRANCIUM	RADIUM		RUTHERFORDIUM Rf	Db	SEABORGIUM Sg	Bh	HASSIUM HS	MEITNERIUM Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
[223.0]	[220.0]	<u> </u>	[201]	[202]	[200]	[202]	[203]	[200]	J								

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
LANTHANIDES	LANTHANUM T o	Cerium Ce	PRASEODYMIUM Pr	NEODYMIUM Nd	PROMETHIUM Pm	Samarium Sm	EUROPIUM Eu	GADOLINIUM Gd	Tb	Dy Dy	HOLMIUM Ho	Erbium Er	Thulium Tm	YTTERBIUM Yb	LUTETIUM T 33
	La	Ce	11	Nu	1 111	SIII	Ľu	Gu	10	Dy	110	171	1 111	10	Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
ACTINIDES	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELLIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]