Click on the links for resources on each topic.

2007-J-2:

- Nuclear and Radiation Chemistry
- Filling Energy Levels in Atoms Larger than Hydrogen
- Bonding in $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{CH}_{2} \mathrm{O}$
- Band Theory - MO in Solids
- Types of Intermolecular Forces

2007-J-3:

- Nuclear and Radiation Chemistry

2007-J-4:

- Bonding in $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{CH}_{2} \mathrm{O}$

2007-J-5:

- Lewis Structures
- VSEPR
- Wave Theory of Electrons and Resulting Atomic Energy Levels

2007-J-6:

- Types of Intermolecular Forces
- Polar Bonds
- Bonding in $\mathrm{H}_{2}-\mathrm{MO}$ theory
- Bonding in $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{CH}_{2} \mathrm{O}$

2007-J-7:

- Thermochemistry
- First and Second Law of Thermodynamics
- Nitrogen Chemistry and Compounds

2007-J-8:

- Thermochemistry
- First and Second Law of Thermodynamics
- Chemical Equilibrium

2007-J-9:

- Thermochemistry

2007-J-10:

- Thermochemistry
- First and Second Law of Thermodynamics

2007-J-11:

- Equilibrium and Thermochemistry in Industrial Processes

2007-J-12:

- Electrolytic Cells
- First and Second Law of Thermodynamics

CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2007
TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME		SID	
OTHER		TUMBER	
NAMES		NUMBE	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Page 24 is for rough working only.

Short answer section

Page	Marks			Marker
	Max	Gained		
12	6			
13	8			
14	5			
15	5			
16	7			
17	6			
18	5			
19	4			
20	4			
21	7			
22	5			
23	5			
Total	67			

- In the spaces provided, explain the meaning of the following terms. You may use an

Marks
(a) diamagnetic
(b) covalent bond
(c) nucleogenesis
(d) hydrogen bond
(e) Hund's rule
(f) electrical conductor

- Balance the following nuclear reactions by identifying the missing nuclide.

- The half life of ${ }^{90} \mathrm{Sr}$ is 29 years. Calculate the remaining activity (in Bq) of a sample containing ${ }^{90} \mathrm{Sr}$ after 100 years given that the initial activity was 1000 Bq .

Answer:

- The three unstable isotopes ${ }_{17}^{33} \mathrm{Cl},{ }_{36}^{77} \mathrm{Kr}$ and ${ }_{12}^{27} \mathrm{Mg}$ are unsuitable for use in medical imaging. For each isotope, provide a reason why it is unsuitable. The following data may be of use:

$$
\begin{array}{ll}
{ }_{17}^{33} \mathrm{Cl} \rightarrow{ }_{+1}^{0} \mathrm{e}+{ }_{16}^{33} \mathrm{~S} & \text { half-life }=2.5 \mathrm{~s} \\
{ }_{36}^{77} \mathrm{Kr} \rightarrow{ }_{+1}^{0} \mathrm{e}+{ }_{35}^{77} \mathrm{Br} & \text { half-life }=75 \text { minutes } \\
{ }_{12}^{27} \mathrm{Mg} \rightarrow{ }_{-1}^{0} \mathrm{e}+{ }_{13}^{27} \mathrm{Al} & \text { half-life }=9.5 \text { minutes }
\end{array}
$$

- The electronic configuration of the molecular oxygen dianion in its ground state is, in order (from left to right) of increasing energy: $\sigma^{2} \sigma^{* 2} \sigma^{2} \sigma^{* 2} \sigma^{2} \pi^{4} \pi^{* 4}$

What is the bond order of $\mathrm{O}_{2}{ }^{2-}$?
\square

Is $\mathrm{O}_{2}{ }^{2-}$ paramagnetic or diamagnetic? Explain your answer.

How many of the valence electrons in $\mathrm{O}_{2}{ }^{2-}$ are in 'lone pairs' according to Lewis theory?

On the electron configuration of $\mathrm{O}_{2}{ }^{2-}$ below, indicate by arrows the molecular orbitals that contain the electron 'lone pairs'.

$$
\sigma^{2} \sigma^{* 2} \sigma^{2} \sigma^{* 2} \sigma^{2} \pi^{4} \pi^{* 4}
$$

- Consider the molecule whose structure is shown below. Complete the table concerning the atoms \mathbf{A}, \mathbf{B} and \mathbf{C} indicated by the arrows.

B

Selected atom	Number of lone pairs about the selected atom	Number of σ-bonds associated with the selected atom	Geometry of σ-bonds about the selected atom
A			
B			
C			

- Calculate the energy (in J) and the wavelength (in nm) of the photon of radiation emitted when the electron in Li^{2+} drops from an $n=4$ state to an $n=2$ state.

Energy $=$	Wavelength $=$

- Describe two physical properties of liquid or solid water that distinguishes it from 'normal' liquids or solids.

Identify one property of the water molecule that is responsible for at least one of the physical properties you described above. Your answer should include both the molecular property and the physical property associated with it.

- Describe one consequence of molecular shape involving non-polar molecules.

- Molecules with multiple resonance structures are said to be "resonance stabilised".

Briefly explain the origin of this extra stability in terms of electron waves and molecular orbitals.

- Write a balanced equation for the combustion of methylhydrazine, $\mathrm{CH}_{3} \mathrm{NHNH}_{2}(\mathrm{~g})$.

Using bond enthalpies, estimate the enthalpy of combustion of methylhydrazine.

Bond enthalpies:	Bond	$\Delta H / \mathrm{kJ} \mathrm{mol}^{-1}$	Bond	$\Delta H / \mathrm{kJ} \mathrm{mol}^{-1}$
	$\mathrm{C}-\mathrm{N}$	285	$\mathrm{O}-\mathrm{H}$	464
	$\mathrm{~N}-\mathrm{N}$	159	$\mathrm{O}=\mathrm{O}$	498
	$\mathrm{C}-\mathrm{H}$	416	$\mathrm{C}=\mathrm{O}$	806
	$\mathrm{~N}-\mathrm{H}$	391	$\mathrm{~N} \equiv \mathrm{~N}$	945

\qquad
Answer:
Liquid methylhydrazine and liquid oxygen can be used as a rocket fuel. Calculate the calorific value (in $\mathrm{kJ} \mathrm{g}^{-1}$) of this fuel.

Answer:

When methylhydrazine is used as a rocket fuel, the usual oxidant is dinitrogen tetroxide rather than liquid oxygen. Why?

- Estimate the average temperature of Mercury given the solar power density at its surface of $9150 \mathrm{~J} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$, and assuming an average albedo of 6% and zero Greenhouse effect.
- The equilibrium constant for the dissolution of silver iodide at $25^{\circ} \mathrm{C}$ is $1.5 \times 10^{-16} \mathrm{M}^{2}$. Calculate the equilibrium concentrations of $\mathrm{Ag}^{+}(\mathrm{aq})$ and $\mathrm{I}^{-}(\mathrm{aq})$ if 0.200 mol of $\mathrm{AgI}(\mathrm{s})$ were dispersed in 1.0 L of (a) water, and (b) 0.0050 M aqueous solution of KI .

- A calorimeter containing 300 mL of water at $25^{\circ} \mathrm{C}$ was calibrated as follows. A 1000 W heating coil was run for 10 s , after which time the temperature had

Marks
4 increased by $7.5^{\circ} \mathrm{C}$. Calculate the heat capacity of the empty calorimeter. The specific heat of water is $4.184 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$.

Answer:

15.0 g of sodium nitrite was dissolved into this calorimeter, and the temperature of the solution was found to decrease by $2.6^{\circ} \mathrm{C}$. Calculate the enthalpy of solution of sodium nitrite.

- Use the figure below to help answer the following.

Write a balanced equation for the smelting of NiO by coke. In what temperature range will this process be spontaneous?

Why are (a) aluminium and (b) tungsten not recovered from their oxides by smelting with coke? What alternative processes are used and why?

- The first step in the production of sulfuric acid is the production of SO_{2} by one of three main routes. Give the equation for SO_{2} production by sulfur burning.
\square
Explain why this is done industrially using compressed air and at high temperatures.
$\Delta H_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{SO}_{2}\right)=-297 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Give the equation for the production of SO_{2} by spent acid regeneration using a 1:1 ratio of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{~S}$.

Give the equation for the roasting of a metal sulphide, MS, in a metallurgical plant.

In the final step, $\mathrm{H}_{2} \mathrm{SO}_{4}$ is produced by adding SO_{3} to concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ to produce "oleum". Why is the reaction $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ not used directly?

- In the chlor-alkali process $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{OH}^{-}(\mathrm{aq})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$ are produced by the electrolysis of a concentrated solution of sodium chloride. On the basis of reduction potentials, $\mathrm{O}_{2}(\mathrm{~g})$ should be produced at the anode instead of $\mathrm{Cl}_{2}(\mathrm{~g})$. Explain the formation of Cl_{2}.
- A certain aluminium refinery produces $\mathrm{Al}(\mathrm{s})$ via the Hall-Herault process using ten

Marks
2 electrolytic cells in parallel, each operating at a current of $220,000 \mathrm{~A}$. What mass of aluminium (in tonnes) is produced each day?

Calculate the mass of carbon anodes consumed each day in such a process.

- State the Second Law of Thermodynamics, and explain how the enthalpy of reaction is related to the entropy change of the surroundings.
\square

Formic acid HCOOH , can dimerise in the gas phase according to the reaction

$$
2 \mathrm{HCOOH} \rightleftharpoons(\mathrm{HCOOH})_{2}
$$

with a standard enthalpy and entropy of dimerisation of $\Delta H^{\circ}=-62 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S^{\circ}=-150 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ respectively. Predict the temperature-dependence of the dimerisation reaction.

Draw a structure that shows the bonding in the dimer.

CHEM1901 - CHEMISTRY 1A (ADVANCED)

CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Permittivity of a vacuum, $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{\mathrm{e}}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{\mathrm{p}}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter
Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$\begin{array}{ll}1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa} & 1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq} \\ 0^{\circ} \mathrm{C}=273 \mathrm{~K} & 1 \mathrm{~Hz}=1 \mathrm{~s}^{-1} \\ 1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3} & 1 \text { tonne }=10^{3} \mathrm{~kg} \\ 1 \AA=10^{-10} \mathrm{~m} & 1 \mathrm{~W}=1 \mathrm{~J} \mathrm{~s}^{-1} \\ 1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J} & \end{array}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples Multiple Prefix Symbol 10^{3} kilo k 10^{6} mega M
$10^{9} \quad$ giga $\quad G$

CHEM1901 - CHEMISTRY 1A (ADVANCED)

CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Standard Reduction Potentials, E ${ }^{\circ}$

Reaction
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Pt}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pt}(\mathrm{s})$
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \operatorname{Pd}(\mathrm{s})$
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$
$\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s})$
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$
$+0.96$
$+0.92$
$+0.80$
$+0.77$
E° / V
$+1.82$
+1.72
$+1.51$
$+1.50$
+1.36
$+1.23$
+1.18
$+0.53$
$+0.34$
$+0.15$
0 (by definition)
-0.04
-0.13
-0.14
-0.24
-0.40
-0.44
-0.74
-0.76
-0.83
-0.89
-1.68
-2.36

CHEM1901 - CHEMISTRY 1A (ADVANCED)

CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Useful formulas

Quantum Chemistry	Electrochemistry
$E=h \nu=h c / \lambda$	$\Delta G^{\circ}=-n F E^{\circ}$
$\lambda=h / m v$	Moles of $e^{-}=I t / F$
$4.5 k_{\mathrm{B}} T=h c / \lambda$	$E=E^{\circ}-(R T / n F) \times 2.303 \log Q$
$E=-Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right)$	$=E^{\circ}-(R T / n F) \times \ln Q$
$\Delta x \cdot \Delta(m v) \geq h / 4 \pi$	$E^{\circ}=(R T / n F) \times 2.303 \log K$
$q=4 \pi r^{2} \times 5.67 \times 10^{-8} \times T^{4}$	$=(R T / n F) \times \ln K$
	$E=E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right)$
Acids and Bases	Gas Laws
$\mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00$	$P V=n R T$
$\mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00$	$\left(P+n^{2} a / V^{2}\right)(V-n b)=n R T$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\}$	
Colligative properties	Kinetics
$\pi=\mathrm{cRT}$	$t_{1 / 2}=\ln 2 / k$
$P_{\text {solution }}=X_{\text {solvent }} \times P^{\circ}{ }_{\text {solvent }}$	$k=A \mathrm{e}^{-E a / R T}$
$\mathrm{p}=\mathrm{kc}$	$\ln [\mathrm{A}]=\ln [\mathrm{A}]_{0}-k t$
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m$	$\ln \frac{k_{2}}{l_{1}}=\frac{E_{a}}{D}\left(\frac{1}{T}-\frac{1}{T}\right)$
$\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m$	
Radioactivity	Thermodynamics \& Equilibrium
$t_{1 / 2}=\ln 2 / \lambda$	$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
$A=\lambda N$	$\Delta G=\Delta G^{\circ}+R T \ln Q$
$\ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t$	$\Delta G^{\circ}=-R T \ln K$
${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$ years	$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$
Miscellaneous	Mathematics
$A=-\log 10 \frac{I}{I_{0}}$	If $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$A=\varepsilon c l$	$\ln x=2.303 \log x$
$E=-A \frac{e^{2}}{4 \pi \varepsilon_{0} r} N_{\mathrm{A}}$	

PERIODIC TABLE OF THE ELEMENTS

-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
S	$\begin{gathered} 1 \\ \substack{1 \\ \text { urpocere } \\ \mathbf{H} \\ 1.008} \end{gathered}$																	$\begin{gathered} \hline \text { nuw } \\ \text { nuw } \\ \text { He } \\ 4.003 \\ \hline \end{gathered}$
	$\begin{gathered} 3 \\ \begin{array}{c} 3 \\ \text { Lruwn } \\ \text { Li } \\ 6.941 \end{array} \end{gathered}$	$\begin{gathered} 4 \\ \hline \text { ввгиним } \\ \mathbf{B e} \\ 9.012 \end{gathered}$											$\begin{gathered} 5 \\ \hline \text { nenav } \\ \mathbf{B} \\ 10.81 \\ \hline \end{gathered}$			$\begin{gathered} 8 \\ \substack{8 \text { oxerex } \\ \mathbf{O} \\ 16.00 \\ \hline} \end{gathered}$		$\begin{gathered} 10 \\ \text { 10xov } \\ \text { Ne } \\ \text { Ne.18 } \\ \hline \end{gathered}$
	$\begin{gathered} 111 \\ \text { somum } \\ \text { Naa } \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \text { macesum } \\ \mathbf{M g} \end{gathered}$											$\begin{gathered} \hline 13 \\ \substack{\text { unumun } \\ \text { Al } \\ 26.98} \end{gathered}$	$\begin{gathered} \hline 14 \\ \hline \text { sulcow } \\ \text { Si } \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \begin{array}{c} \text { puasespous } \\ \mathbf{P} \\ 30.97 \end{array} \end{gathered}$	$\begin{gathered} \hline 16 \\ \text { surure } \\ \text { sun } \\ 32.07 \end{gathered}$	$\begin{gathered} 17 \\ \begin{array}{c} \text { clowne } \\ \text { Cl } \\ \text { Cl } \end{array} \end{gathered}$	$\begin{gathered} 18 \\ \text { ancov } \\ \text { Ar } \\ 39.95 \end{gathered}$
	$\begin{gathered} 19 \\ \substack{\text { porssen } \\ \mathbf{K} \\ 39.10} \end{gathered}$	$\begin{gathered} \hline 20 \\ \text { cuncum } \\ \text { Ca } \\ 40.08 \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ \substack{\text { scavoum } \\ \text { sc } \\ 44.96 \\ \hline \\ \hline} \end{gathered}$	$\begin{gathered} \hline 22 \\ \text { manum } \\ \mathrm{Ti} \\ 47.88 \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ \substack{\text { venumum } \\ \text { V } \\ 50.94} \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ \begin{array}{c} \text { cheown } \\ \text { Cr } \\ \text { Cr. } \\ 52.00 \end{array} \end{gathered}$		$\begin{gathered} \hline 26 \\ \text { Reven } \\ \text { Fe } \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ \text { comur } \\ \text { Co } \\ 58.93 \end{gathered}$	$\begin{gathered} \hline 28 \\ \hline \text { nerul } \\ \text { Ni } \\ 58.69 \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} 29 \\ \text { copres } \\ \text { Cu } \\ 63.55 \end{array} \end{gathered}$	$\begin{gathered} 30 \\ \hline \text { zanc } \\ \text { Zn } \\ 65.39 \\ \hline \end{gathered}$	$\begin{gathered} 31 \\ \text { cunum } \\ \text { Ga } \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \begin{array}{c} \text { crenwnum } \\ \text { Ge } \\ 72.59 \end{array} \end{gathered}$	$\begin{gathered} 33 \\ \text { asenc } \\ \text { As } \\ 74.92 \\ \hline \end{gathered}$	$\begin{gathered} 34 \\ \begin{array}{c} 34 \\ \text { surwen } \\ \text { Se } \\ 78.96 \end{array} \end{gathered}$	$\begin{gathered} 35 \\ \hline \text { nowne } \\ \mathbf{B r} \\ 79.90 \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ \begin{array}{c} 36 \text { krrow } \\ \text { Kr } \\ \text { Kr } \\ 83.80 \end{array} \end{gathered}$
		$\begin{gathered} \hline 38 \\ \substack{\text { smosurnen } \\ \text { Sr } \\ 87.62 \\ \hline \\ \hline \\ \hline} \\ \hline \end{gathered}$	$\begin{gathered} 39 \\ \text { nuruen } \\ \mathbf{Y} \\ 88.91 \\ \hline \end{gathered}$	$\begin{gathered} \hline 40 \\ \text { zuncounu } \\ \mathbf{Z r} \\ 91.22 \\ \hline \end{gathered}$	$\begin{gathered} 41 \\ \hline \text { monum } \\ \text { Nb } \\ 922.91 \end{gathered}$	$\begin{gathered} \hline 42 \\ \text { not yenenven } \\ \text { Mo } \\ 95.94 \\ \hline \end{gathered}$	$\begin{gathered} \hline 43 \\ \text { птененим } \\ \text { Tc } \\ {[98.91]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 44 \\ \text { numenum } \\ \text { Ru } \\ 101.07 \\ \hline \end{gathered}$		$\begin{gathered} \hline 46 \\ \text { sunumum } \\ \text { Pd } \\ 106.4 \\ \hline \end{gathered}$	$\begin{gathered} \hline 47 \\ \text { sulver } \\ \text { Ag } \\ 107.87 \\ \hline \end{gathered}$	$\begin{gathered} \hline 48 \\ \substack{\text { canomen } \\ \text { Cd } \\ 112.40 \\ \hline \\ \hline} \end{gathered}$	$\begin{gathered} \hline 49 \\ \text { noven } \\ \text { In } \\ 114.82 \\ \hline \end{gathered}$	$\begin{array}{r} 50 \\ \text { Tw } \\ \text { Sn } \\ 118.69 \\ \hline \end{array}$	$\begin{gathered} \hline 51 \\ \substack{\text { antuonv } \\ \text { Sb } \\ 121.75 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 52 \\ \text { ruuren } \\ \text { Te } \\ 127.60 \\ \hline \end{gathered}$	$\begin{gathered} \hline 53 \\ \text { ronse } \\ \text { I } \\ 126.90 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 54tow } \\ \text { xen } \\ \mathbf{X 3 1} \\ 131.30 \\ \hline \end{gathered}$
	$\begin{gathered} 55 \\ \text { castun } \\ \text { CS } \\ 132.91 \\ \hline \end{gathered}$	$\begin{gathered} 56 \\ \hline \text { nexumu } \\ \text { Ba } \\ 137.34 \\ \hline \end{gathered}$	57-71	$\begin{gathered} 72 \\ \text { numum } \\ \text { Hf } \\ \text { H78.49 } \\ \hline \end{gathered}$	$\begin{gathered} \hline 73 \\ \text { raverum } \\ \text { Ta } \\ 180.95 \\ \hline \end{gathered}$	$\begin{gathered} 74 \\ \substack{74 \times \text { nesen } \\ \mathbf{W} \\ 183.85 \\ \hline} \\ \hline \end{gathered}$	$\begin{gathered} \hline 75 \\ \text { Renkwn } \\ \text { Re } \\ 186.2 \\ \hline \end{gathered}$	$\begin{gathered} 76 \\ \hline \text { ossum } \\ \text { Os } \\ 190.2 \\ \hline \end{gathered}$		$\begin{gathered} 78 \\ \hline \text { nunrwen } \\ \mathbf{P t} \\ 195.09 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 79 \\ \text { coun } \\ \text { Au } \\ 196.97 \\ \hline \end{array}$	$\begin{gathered} 80 \\ \text { wencury } \\ \mathbf{H g} \\ 200.59 \\ \hline \end{gathered}$	$\begin{gathered} 81 \\ \text { ranum } \\ \text { Tl } \\ 204.37 \end{gathered}$	$\begin{array}{r} 82 \\ \hline \text { una } \\ \text { Pb } \\ 207.2 \\ \hline \end{array}$	$\begin{gathered} 83 \\ \begin{array}{c} 83 \mathrm{n} w \mathrm{u} \\ \mathbf{B i} \\ 208.98 \end{array} \\ \hline \end{gathered}$		85 Nranese $\mathbf{A t}$ $[210.0]$	$\begin{gathered} 86 \\ \text { 8unov } \\ \mathbf{R n} \\ {[222.0]} \\ \hline \end{gathered}$
	87 rancum Fr $[223.0]$	88 Ranum $\mathbf{R a}$ $[226.0]$	89-103	104 Ununeranoun Rf $[261]$	$\begin{gathered} \hline 105 \\ \text { nunumum } \\ \text { Db } \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 106 \\ \text { sexaonecum } \\ \text { Sg } \\ {[266]} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 107 \\ & \text { nomenum } \\ & \text { Bh } \\ & {[262]} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 108 \\ \text { nussum } \\ \mathbf{H s} \\ {[265]} \end{gathered}$	$\begin{gathered} \hline 109 \\ \begin{array}{c} \text { мensurnum } \\ \mathbf{M t} \\ {[266]} \end{array} \\ \hline \end{gathered}$	1100 $\substack{\text { nenewrsurum } \\ \text { Ds } \\ \text { [271] }}$	$\begin{gathered} \hline 111 \\ \text { noenrcancm } \\ \mathbf{R g} \\ {[272]} \end{gathered}$							

