Topics in the June 2007 Exam Paper for CHEM1903

Click on the links for resources on each topic.

2007-J-2:

- Nuclear and Radiation Chemistry
- Filling Energy Levels in Atoms Larger than Hydrogen
- Bonding in O₂, N₂, C₂H₂, C₂H₄ and CH₂O
- Band Theory MO in Solids
- Types of Intermolecular Forces

2007-J-3:

• Nuclear and Radiation Chemistry

2007-J-4:

• Bonding in O₂, N₂, C₂H₂, C₂H₄ and CH₂O

2007-J-5:

- Lewis Structures
- VSEPR
- Wave Theory of Electrons and Resulting Atomic Energy Levels

2007-J-6:

- Types of Intermolecular Forces
- Polar Bonds
- Bonding in H₂ MO theory
- Bonding in O₂, N₂, C₂H₂, C₂H₄ and CH₂O

2007-J-7:

- Thermochemistry
- First and Second Law of Thermodynamics
- Nitrogen Chemistry and Compounds

2007-J-8:

- Thermochemistry
- First and Second Law of Thermodynamics
- Chemical Equilibrium

2007-J-9:

Thermochemistry

```
2007-J-10:
```

- Thermochemistry
- First and Second Law of Thermodynamics

2007-J-11:

• Equilibrium and Thermochemistry in Industrial Processes

2007-J-12:

• Electrolytic Cells

• First and Second Law of Thermodynamics

22/45(a) The University of Sydney <u>CHEMISTRY 1A (ADVANCED) - CHEM1901</u> <u>CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) - CHEM1903</u>

CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2007

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Page 24 is for rough working only.

OFFICIAL USE ONLY

Multiple choice section				
	Marks			
Max	Gained			
33				
	Max 33			

Short answer section

	Marks			
Page	Max	Gained		Marker
12	6			
13	8			
14	5			
15	5			
16	7			
17	6			
18	5			
19	4			
20	4			
21	7			
22	5			
23	5			
Total	67			

• In the spaces provided, explain the meaning of the following terms. You may use an example, equation or diagram where appropriate.	Marks 6
(a) diamagnetic	
(b) covalent bond	_
(c) nucleogenesis	_
(d) hydrogen bond	_
(e) Hund's rule	_
(f) electrical conductor	_

Marks • Balance the following nuclear reactions by identifying the missing nuclide. 3 $^{36}_{17}\text{Cl} + ^{0}_{-1}\text{e} \rightarrow$ $^{238}_{92}$ U \rightarrow $^4_2\alpha$ + $^{238}_{92}U + ^{12}_{6}C \rightarrow 4^{1}_{0}n +$ The half life of ⁹⁰Sr is 29 years. Calculate the remaining activity (in Bq) of a sample containing ⁹⁰Sr after 100 years given that the initial activity was 1000 Bq. 2 • Answer: The three unstable isotopes ${}^{33}_{17}$ Cl, ${}^{77}_{36}$ Kr and ${}^{27}_{12}$ Mg are unsuitable for use in medical 3 • imaging. For each isotope, provide a reason why it is unsuitable. The following data may be of use: $^{33}_{17}\text{Cl} \rightarrow ^{0}_{+1}\text{e} + ^{33}_{16}\text{S}$ half-life = 2.5 s $^{77}_{36}$ Kr $\rightarrow ^{0}_{+1}$ e + $^{77}_{35}$ Br half-life = 75 minutes $^{27}_{12}Mg \rightarrow ^{0}_{-1}e + ^{27}_{13}Al$ half-life = 9.5 minutes

• The electronic configuration of the molecular oxygen dianion in its ground state is, in order (from left to right) of increasing energy: $\sigma^2 \sigma^{*2} \sigma^2 \sigma^{*2} \sigma^2 \pi^4 \pi^{*4}$ 5

What is the bond order of $O_2^{2-?}$?

Is O_2^{2-} paramagnetic or diamagnetic? Explain your answer.

How many of the valence electrons in O_2^{2-} are in 'lone pairs' according to Lewis theory?

On the electron configuration of $O_2^{2^-}$ below, indicate by arrows the molecular orbitals that contain the electron 'lone pairs'.

 $\sigma^2 \sigma^{*2} \sigma^2 \sigma^{*2} \sigma^2 \pi^4 \pi^{*4}$

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

3

Marks • Consider the molecule whose structure is shown below. Complete the table concerning the atoms A, B and C indicated by the arrows. A С $CH_2 = C - O - NH_2$ B C. C 1 N C 1 1 • 1

atom	pairs about the selected atom	associated with the selected atom	the selected atom
А			
В			
С			

• Calculate the energy (in J) and the wavelength (in nm) of the photon of radiation emitted when the electron in Li^{2+} drops from an n = 4 state to an n = 2 state.

2

Energy =	Wavelength =

• Describe two physes 'normal' liquids o	sical properties of liquid or solid water that distinguishes it from or solids.	Marks 3
Identify one prope	erty of the water <i>molecule</i> that is responsible for at least one of the	-
physical propertie molecular propert	es you described above. Your answer should include both the by and the physical property associated with it.	
Describe one cons	sequence of molecular shape involving <i>non-polar</i> molecules.	2
• Molecules with m Briefly explain the molecular orbitals	nultiple resonance structures are said to be "resonance stabilised". e origin of this extra stability in terms of electron waves and s.	2

Using bond enthalp	oies, estima	ate the enthalpy of	combustio	n of methylhydraz	ane.
Bond enthalpies:	Bond	$\Delta H / \text{kJ mol}^{-1}$	Bond	$\Delta H / \text{kJ mol}^{-1}$	_
	C–N	285	0–H	464	_
	N–N	159	0=0	498	_
	С–Н	416	C=O	806	_
	N–H	391	N≡N	945	
		Ansv	ver:		
Liquid methylhydra calorific value (in k	azine and l $J g^{-1}$ of the	Ansv iquid oxygen can nis fuel.	wer: be used as	a rocket fuel. Calc	culate the
Liquid methylhydra calorific value (in k	azine and l LJ g ⁻¹) of th	Ansv iquid oxygen can his fuel.	ver: be used as	a rocket fuel. Calc	culate the
Liquid methylhydra calorific value (in k	azine and l sJ g ⁻¹) of th	Ansv iquid oxygen can his fuel.	wer: be used as	a rocket fuel. Calc	culate the
Liquid methylhydra alorific value (in k	azine and l sJ g ⁻¹) of th	iquid oxygen can his fuel.	wer: be used as wer:	a rocket fuel. Calc	culate the

2007-J-7

• Estimate the average temperature of Merosurface of 9150 J m ⁻² s ⁻¹ , and assuming a effect.	cury given the solar power density at its n average albedo of 6% and zero Greenhouse	Marks 2
• The equilibrium constant for the dissoluti Calculate the equilibrium concentrations were dispersed in 1.0 L of (a) water, and	Answer: fon of silver iodide at 25 °C is 1.5×10^{-16} M ² . of Ag ⁺ (aq) and I ⁻ (aq) if 0.200 mol of AgI(s) (b) 0.0050 M aqueous solution of KI.	3
(a)	(b)	

•	A calorimeter containing 300 mL of water at 25 °C was calibrated as follows. A 1000 W heating coil was run for 10 s, after which time the temperature had increased by 7.5 °C. Calculate the heat capacity of the empty calorimeter. The specific heat of water is $4.184 \text{ J K}^{-1} \text{ g}^{-1}$.	Marks 4
	Answer:	_
	15.0 g of sodium nitrite was dissolved into this calorimeter, and the temperature of the solution was found to decrease by 2.6 °C. Calculate the enthalpy of solution of sodium nitrite.	
	Answer:	

• The first step in the production of sulfuric acid is the production of SO ₂ by one of three main routes. Give the equation for SO ₂ production by sulfur burning.	Marks 7
What is the equilibrium constant for this reaction?	
Explain why this is done industrially using compressed air and at high temperatures. $\Delta H_{\rm f}^{\rm o}({\rm SO}_2) = -297 \rm kJ mol^{-1}$	
Give the equation for the production of SO ₂ by spent acid regeneration using a 1:1	-
ratio of H ₂ SO ₄ and H ₂ S.	-
Give the equation for the roasting of a metal sulphide, MS, in a metallurgical plant.	-
In the final step, H_2SO_4 is produced by adding SO ₃ to concentrated H_2SO_4 to produce "oleum". Why is the reaction $SO_3 + H_2O \rightarrow H_2SO_4$ not used directly?	_
	_

•	In the chlor-alkali process $H_2(g)$, $OH^-(aq)$ and $Cl_2(g)$ are produced by the electrolysis of a concentrated solution of sodium chloride. On the basis of reduction potentials, $O_2(g)$ should be produced at the anode instead of $Cl_2(g)$. Explain the formation of Cl_2 .	Marks 2
•	A certain aluminium refinery produces Al(s) via the Hall-Herault process using ten electrolytic cells in parallel, each operating at a current of 220,000 A. What mass of aluminium (in tonnes) is produced each day?	3
	Answer:	
	Calculate the mass of carbon anodes consumed each day in such a process.	
	Answer:	

• State the Second Law of Thermodynamics, and explain how the enthalpy of reaction is related to the entropy change of the surroundings.								
		_						
	Formic acid HCOOH, can dimerise in the gas phase according to the reaction							
	2HCOOH \iff (HCOOH) ₂							
	with a standard enthalpy and entropy of dimerisation of $\Delta H^{\circ} = -62 \text{ kJ mol}^{-1}$ and $\Delta S^{\circ} = -150 \text{ J K}^{-1} \text{ mol}^{-1}$ respectively. Predict the temperature-dependence of the dimerisation reaction.							
		_						
	Draw a structure that shows the bonding in the dimer.	_						

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

DATA SHEET

Physical constants Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_p = 1.6726 \times 10^{-27} \text{ kg}$ Mass of neutron, $m_n = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	imal fract	ions	Deci	Decimal multiples						
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol					
10^{-3}	milli	m	10^{3}	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	Μ					
10^{-9}	nano	n	10 ⁹	giga	G					
10^{-12}	pico	р								

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Standard Reduction Potentials, E°	
Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$	-3.04

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$E = -Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{1/2} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_{2}}{k_{2}} = \frac{E_{a}}{(1 - \frac{1}{k_{1}})}$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2'$
Radioactivity	Thermodynamics & Equilibrium
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 ln(A_0/A_t) years	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log 10 \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1 нудгоден Н 1.008		_															2 неши Не 4.003
	3 LITHIUM Li	4 beryllium Be											5 boron B	6 carbon C	7 nitrogen N	8 oxygen O	9 ^{fluorine} F	10 _{меом} Ne
	6.941 11	9.012 12											10.81 13	12.01 14	14.01 15	16.00 16	19.00 17	20.18 18
	^{sodium} Na 22.99	мадлевіцм Mg 24.31											ALUMINIUM Al 26.98	silicon Si 28.09	рноярновия Р 30.97	SULFUR S 32.07	CHLORINE Cl 35.45	argon Ar 39.95
	19 potassium K	20 Calcium	21 scandium	22 TITANIUM T i	23 VANADIUM V	24 снгомим	25 MANGANESE	26 IRON Fe	27 Cobalt	28 NICKEL	29 COPPER	30 zinc Zinc	31 GALLIUM	32 germanium	33 ARSENIC	34 SELENIUM	35 BROMINE Br	36 KRYPTON
	3 9.10	Ua 40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
	37 _{кивідіим} Rb	38 strontium Sr	39 yttrium Y	40 zirconium Zr	41 NIOBIUM Nb	42 molybdenum Mo	43 TECHNETIUM TC	44 ^{RUTHENIUM} Ru	45 _{кнодіим} Rh	46 palladium Pd	47 silver Ag	48 cadmium Cd	49 ілдіим In	50 ты Sn	51 antimony Sb	52 TELLURIUM Te	53 iodine I	54 xenon Xe
	85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
	55 caesium Cs	56 barium Ba	57-71	72 нарліцм Н Г	73 Tantalum	74 tungsten W	75 RHENIUM	76 озміим ОS	77 iridium Ir	78 platinum Pt	79 ^{GOLD}	80 mercury Ho	81 THALLIUM	82 LEAD Ph	83 візмитн Ві	84 POLONIUM	85 astatine At	86 radon Rn
	132.91	137.34		178.49	9 180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
	87 FRANCIUM	88 radium	89-103	104 RUTHERFORD	IUM 105 DUBNIUM	106 seaborgium	107 BOHRIUM	108 hassium	109 meitnerium	110 darmstadtium	111 ROENTGENIUM					·		
	Fr [223.0]	Ra [226.0]		Rf [261]	Db [262]	Sg [266]	Bh [262]	Hs [265]	Mt [266]	Ds [271]	Rg [272]							
Ι	ANTHANID	ES LANTHA La La	7 5 NUM CEI a C	8 пим Се	59 praseodymum Pr 140.91	60 NEODYMIUM Nd	61 PROMETHIUM Pm	62 samarium Sm	63 EUROPIUM Eu	64 GADOLINIT Gd	UM 65 TERBI	b I 03 16	56 ^{ROSIUM} н Dy 2,50 1	67 юсмим Но	68 Erbium Er	69 тницим Тт 168.03	70 ytterbium Yb	71 LUTETIUM LU 174.07

95 Americium

Am

[243.1]

96 curium

Cm

[247.1]

97 BERKELLIUM

Bk

[247.1]

98 californium

Cf

[252.1]

100 Fermium

Fm

[257.1]

101 mendelevium

Md

[256.1]

99 EINSTEINIUM

Es

[252.1]

102 NOBELIUM

No

[259.1]

103 LAWRENCIUM

Lr

[260.1]

PERIODIC TABLE OF THE ELEMENTS

CHEM1901/1903

22/45(b)

ACTINIDES

89 actinium

Ac

[227.0]

90 THORIUM

Th

232.04

91 protactinium

Pa

[231.0]

92

URANIUM

U

238.03

93 NEPTUNIUM

Np

[237.0]

94 plutonium

Pu

[239.1]