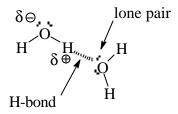
2000 CHEM1403 & CHEM1907/1908 (1LS Courses)

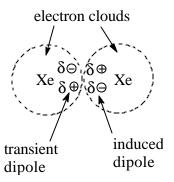
2000-J-2

2000-J-3

- $2.84 \times 10^{-19} \text{ J}$ 35.0%
- iron
 1s² 2s² 2p6 3s² 3p6 4s² 3d6
 12
 6
 1
- 1- Butanol has H-bonds as major intermolecular force. Diethyl ether has much weaker intermolecular forces, *viz.* dispersion forces.

2000-J-4


•


BrF₅ and SnCl₂

2000-J-5

When H is bonded to the very electronegative and small atoms F, O and N, a very polarised bond forms. The small nature of the atoms involved means that the atoms can approach very close to each other and an anomalously strong intermolecular bond (H-bond) is formed.

Slight variations in the electron density of molecules cause transient dipoles in the electron cloud. These can induce dipoles in neighbouring molecules and the two dipoles can attract each other (dispersion force). The larger atoms have more polarisable electron clouds and hence larger dispersion forces.

- hexaamminecobalt(III) bromide [Fe(H₂O)₅Cl]Cl₂ [Cr(NH₃)₄Cl₂]NO₃ sodium tetrachlorocuprate(II)
- S Sc Ca K Li Be S Cl

2000-J-6

• SOCl₂

$$CI$$
 CI
 CI
 CH_3CH_2OH
 CO_2
 CO_2

○ ⊕
CH₃CH₂CH₂O Na
CH₃CH₂CH₂OH solvent

• $C_{10}H_{13}O_4N_5$ furanose β -anomer

• Both heterocycles are aromatic with 6π electrons. In pyridine, the 5 C atoms and the N atom each provide 1 electron for the aromatic system. The N is sp^2 hybridised with 2 electrons involved in σ bonds to neighbouring carbons and 1 lone pair which is available to act as a proton acceptor in the reaction with HCl.

In pyrrole, the N is again sp² hybridised with 2 electrons involved in σ bonds to neighbouring carbons and 1 electron involved in the σ bond to H. The aromatic system is made up of 1 electron from each of the 4 carbon atoms and 2 electrons from the N. This accounts for N's total complement of 5 electrons and hence there is no lone pair available to act as a proton acceptor.

2000-J-8

•

2000-J-8 (cont.)

Zero. This compound is a meso isomer. It has an internal plane of symmetry and is superposable on its mirror image. Hence not optically active.

2000-J-9

• alkyl ammonium ion, phenol, amide, aromatic ring (arene), thioether, carboxylate ion

HO
$$CH_2$$
 H_3N $COOH$ $CH_3SCH_2CH_2$ H_3N $COOH$ $COOH$ $COOH$

$$H_2N$$
— CH — CO_2^{\bigoplus} Na^{\bigoplus}
 CH_2
 O
 Na

•

$$\begin{array}{c} O \\ \parallel \\ C \\ C \\ C \\ H_2C \\ C \\ NH \\ C \\ C \end{array}$$

There are no teminal COOH or NH_2 groups, so zwitterion can't form - no intramolecular acid/base reaction can occur.