The University of Sydney

CHEM1907 - CHEMISTRY 1 LIFE SCIENCES A MOLECULAR (ADVANCED)

CHEM1908 - CHEMISTRY 1 LIFE SCIENCES A (ADVANCED)

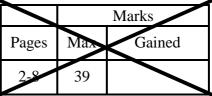
CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2005

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS


FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 16 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution. Logarithms may also be used.
- Numerical values required for any question as well as a Periodic Table are printed on a separate data sheet.
- Pages 12, 15 and 20 are for rough work only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
9	11			
10	4			
11	8			
13	13			
14	4			
16	6			
17	3			
18	8			
19	4			
Total	61			
Check	Total			

22/09(a)

Marks

5

4

2

• Complete the following table. Give, as required, the formula, the systematic name, the oxidation number of the underlined atom and, where indicated, the number of *d* electrons for the element in this oxidation state.

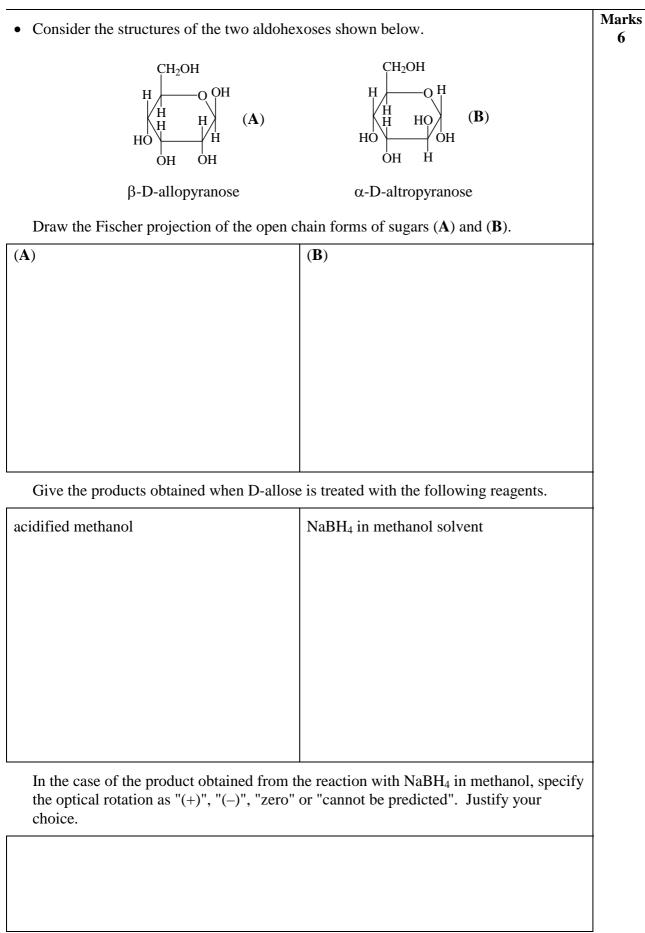
FORMULA	SYSTEMATIC NAME	OXIDATION NUMBER	NUMBER OF <i>d</i> ELECTRONS
<u>S</u> O ₃			
K <u>Mn</u> O ₄			
CoCl ₂ ·6H ₂ O			
	ammonium sulfate		

• Draw the Lewis structures, showing all valence electrons for the following species. Indicate which of the species have contributing resonance structures.

NO ₃ ⁻	CO ₂	N ₂ H ₂
Resonance: YES / NO	Resonance: YES / NO	Resonance: YES / NO

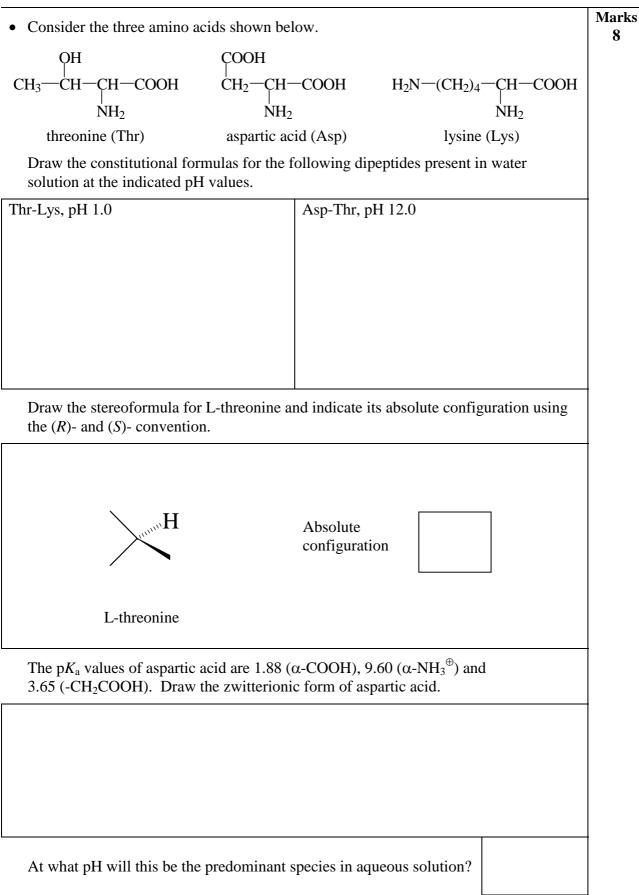
• A sample of carboxypeptidase (an enzyme) was purified and found on analysis to contain 0.191% by weight of zinc. What is the *minimum* molecular weight of the enzyme if we assume it is a monomer?

enzyme if we assume it is a monomer?	
1	
	Answer:

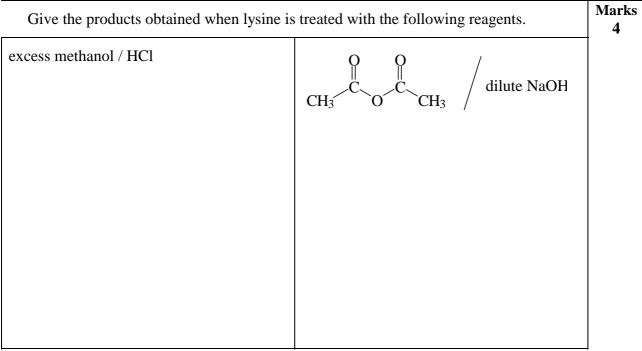

Solutions of lead(II) nitrate (0.080 M, 60 are mixed. What amount (in mol) of PbI2	mL) and potassium iodide (0.080 M, 40 mL) ₂ (s) precipitates?	Marks 4
What is the final concentration of K ⁺ (aq)	Answer: ions remaining in solution after the reaction?	
	Answer:]

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks • Shown here are the classical and the zwitterionic forms of the amino acid leucine. 8 $\begin{array}{c} \mathbf{C} \\ \mathbf{H}_{2}\mathbf{N} - \mathbf{C}\mathbf{H} - \mathbf{C} \\ \mathbf{H}_{2}\mathbf{N} - \mathbf{C}\mathbf{H} \\ \mathbf{H}_{2}\mathbf{N} - \mathbf{C}\mathbf{H} \\ \mathbf{H}_{2}\mathbf{H} \\ \mathbf{H}_{2}\mathbf{H}$ H₃N−CH− CH₂ CH₃-ĊHa В List the types of intermolecular interactions in which each of the indicated sites (A, B and \mathbf{C}) in leucine could be involved. Α В С Provide the requested information for each of the indicated atoms in leucine. Atom Geometric arrangement of the Hybridisation Geometry/shape of σ -bonding electron pairs around the atom of the atom electron pairs around the atom ^{1}C ²C **3**O Given that the p K_a of the carboxylic acid group of leucine is 2.32 and the p K_b of the amine group is 4.24, do you expect the classical or the zwitterionic form to predominate when leucine is dissolved in water? In other words, does the following equilibrium lie to the right or left? Show your reasoning. $\stackrel{\oplus}{\operatorname{H_3N-CH}}$ CH(CH₂CH(CH₃)₂)-CO₂ $H_2N-CH(CH_2CH(CH_3)_2)-COOH$


• Complete the following table. Make sure you complete the name of the starting material where indicated.			
STARTING MATERIAL NAME (where required)	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)	
CH ₃ CH ₂ CHCH ₂ CH ₃ Br Name:		$\begin{array}{c} CH_{3}CH_{2}CHCH_{2}CH_{3}\\ Br^{\ominus} \oplus N(CH_{3})_{3}\end{array}$	
CH ₃ CH ₂ CH ₂ —C—CH ₃ Name:	1. LiAlH₄ / dry ether 2. H [⊕] / H ₂ O		
Name:	H ₂ / Pd catalyst		
COOCH ₂ CH ₃	3 M NaOH / heat		
ОН		O CH ₃	
HO	conc. HCl / heat		
O H	$\left[\operatorname{Ag}(\operatorname{NH}_3)_2\right]^{\oplus}$ / dil. OH		
Br			

Marks • Two of the following compounds are bases and two are not. Identify the two bases 4 and explain, with the aid of diagrams, why they react with acids and why the other two compounds do not. H | N NH₂ CH₃ Ö Η pyridine pyrrole aniline acetanilide



THIS QUESTION IS CONTINUED ON THE NEXT PAGE.

Draw the Haworth structure of β -D-allopyranosyl- α -D-altropyranoside.	Marks 3
Will this disaccharide be a reducing sugar? Explain your answer.	
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY	

THIS QUESTION IS CONTINUED ON THE NEXT PAGE.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

CHEM1907 - CHEMISTRY 1 LIFE SCIENCES A MOLECULAR (ADVANCED) CHEM1908 - CHEMISTRY 1 LIFE SCIENCES A (ADVANCED)

DATA SHEET

Physical constants Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_p = 1.6726 \times 10^{-27} \text{ kg}$ Mass of neutron, $m_p = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10 ⁻⁹	nano	n
10^{-12}	pico	р

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	Μ
10 ⁹	giga	G

CHEM1907 - CHEMISTRY 1 LIFE SCIENCES A MOLECULAR (ADVANCED) CHEM1908 - CHEMISTRY 1 LIFE SCIENCES A (ADVANCED)

Standard Reduction Potentials, E°			
Reaction	E° / V		
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82		
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72		
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36		
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$	+1.23		
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92		
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80		
$\operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77		
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53		
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34		
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15		
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)		
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04		
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13		
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14		
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24		
$\mathrm{Co}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{s})$	-0.28		
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44		
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74		
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76		
$2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83		
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89		
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68		
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36		
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71		

CHEM1907 - CHEMISTRY 1 LIFE SCIENCES A MOLECULAR (ADVANCED) CHEM1908 - CHEMISTRY 1 LIFE SCIENCES A (ADVANCED)

Useful formulas								
Quantum Chemistry	Radioactivity							
$E = h\nu = hc/\lambda$	$t_{1/2} = \ln 2/\lambda$							
$\lambda = h/mv$	$A = \lambda N$							
$4.5k_{\rm B}T = hc/\lambda$	$\ln(N_0/N_t) = \lambda t$							
$E = Z^2 E_{\rm R}(1/n^2)$	14 C age = 8033 ln(A_0/A_t)							
Acids and Bases	Gas Laws							
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT							
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$							
$pH = pK_a + \log\{[A^-] / [HA]\}$								
Colligative properties	Kinetics							
$\pi = cRT$	$t_{\frac{1}{2}} = \ln 2/k$							
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$							
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{o} - kt$							
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$							
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2$							
Electrochemistry	Thermodynamics & Equilibrium							
$\Delta G^{\circ} = -nFE^{\circ}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$							
Moles of $e^- = It/F$	$\Delta G = \Delta G^{\circ} + RT \ln Q$							
$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$	$\Delta G^{\circ} = -RT \ln K$							
$= E^{\circ} - (RT/nF) \times \ln Q$	$K_{\rm p} = K_{\rm c} \left(RT ight)^{\Delta n}$							
$E^{\circ} = (RT/nF) \times 2.303 \log K$								
$= (RT/nF) \times \ln K$								
$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$								
Polymers	Mathematics							
$R_{\rm g} = \sqrt{\frac{nl_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$							
	$\ln x = 2.303 \log x$							

une 2005

2

1

3

5

4

6

7

Jur	-	_	e	-	•	Ũ		U	-					
ſ	1 hydrogen													
	HIROGEN													
	1.008													
	3 LITHIUM	4 BERYLLIUM											5 boron	Ī
	Li	Be											B	
	6.941	9.012											10.81	
	11 sodium	12 magnesium											13 ALUMINIUM	
	Na	Mg											Al	l
	22.99	24.31											26.98	м 3 2 2
	19	20	21	22	23	24	25	26	27	28	29	30	31	
	POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	
08	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	ļ
19	37	38	39	40	41	42	43	44	45	46	47	48	49	l
120	RUBIDIUM Rb	strontium Sr	YTTRIUM Y	zirconium Zr	NIOBIUM Nb	MOLYBDENUM Mo	TECHNETIUM TC	RUTHENIUM Ru	RHODIUM Rh	PALLADIUM Pd	SILVER Ag	CADMIUM Cd	INDIUM In	l
19(85.47	87.62	∎ 88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	l
СНЕМ1907/1908	55	56	57-71	72	73	74	75	76	77	78	79	80	81	Ì
E	CAESIUM	BARIUM		HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	l
U U	Cs	Ba		Hf	Та	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	l
	132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	
	87 FRANCIUM	88 RADIUM	89-103	104 RUTHERFORDIUM	105 dubnium	106 seaborgium	107 bohrium	108 hassium	109 meitnerium					
	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt					
	[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]					

LANTHANIDES	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Lanthanum	сегим	praseodymium	^{NEODYMIUM}	^{ркометниим}	samarium	_{еигортим}	gadolinium	теквіим	_{dysprosium}	^{ноіміим}	егвіим	^{тницим}	^{ytterbium}	_{цитетим}
	La	Се	Pr	Nd	Рт	Sm	Eu	Gd	Тb	Dy	Но	Er	Тт	Yb	Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
ACTINIDES	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	астіліци	^{тновим}	protactinium	uranium	Neptunium	Plutonium	Americium	curium	berkellium	californium	EINSTEINIUM	<i>Fermium</i>	мендеleviuм	Nobelium	LAWRENCIUM
	Ас	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS

10

11

12

13

14

6

CARBON

С

12.01

14

SILICON

Si

28.09

32

GERMANIUM

Ge

72.59

50

TIN

Sn

118.69

82

LEAD Pb

207.2

15

7

NITROGEN

Ν

14.01

15

PHOSPHORUS

Р

30.97

33

ARSENIC

As 74.92

51 ANTIMONY

Sb

121.75

83

BISMUTH

Bi

208.98

16

8

OXYGEN

0

16.00

16

SULFUR

S

32.07

34

SELENIUM

Se

78.96

52

TELLURIUM

Te

127.60

84

POLONIUM

Po

[210.0]

17

9

FLUORINE

F

19.00

17

CHLORINE

Cl

35.45

35

BROMINE

Br

79.90

53

IODINE

Ι

126.90

85

ASTATINE

At

[210.0]

18

2 нелим **Не** 4.003

10

NEON

Ne

20.18

18

ARGON

Ar

39.95

36

KRYPTON

Kr

83.80

54

XENON

Xe

131.30

86

RADON

Rn

[222.0]

9

8

22/09(b)