The University of Sydney

CHEM1908 - CHEMISTRY 1 LIFE SCIENCES A (ADVANCED)

CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2006

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 18 pages of examinable material.
- Complete the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a ●.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution. Logarithms may also be used.
- Numerical values required for any question as well as a Periodic Table are printed on a separate data sheet.
- Page 20 is for rough work only.

OFFICIAL USE ONLY

Multiple choice section

Pages Max	Gained
2-11 36	

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
12	9			
13	3			
14	7			
15	5			
16	11			
17	10			
18	8			
19	11			
Total	64			
Check	Check Total			

What are the three quantum numbers that describe the orbital that contains the electron furthest from the nucleus in the K atom?

> l =n = $m_1 =$

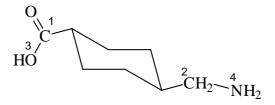
> > 4

3

• Draw the Lewis structures, showing all valence electrons for the following species. Indicate which of the species have contributing resonance structures.

 $NO_3^ NCO^{-}$ COF_2 Resonance: YES / NO Resonance: YES / NO Resonance: YES / NO

• Human haemoglobin has a molar weight of 6.45×10^4 g mol⁻¹ and contains 3.46 g of iron per kg. Calculate the number of iron atoms in each molecule of haemoglobin.


Answer:

CHEM1908 2	006-J-3	June 2006	22/48(a)
• If 50 mL of a 0.10 M solution of A of BaCl ₂ , what mass of AgCl(s) w			Marks 3
	Answer:		
What is the concentration of NO ₃	ions in the final solu	ution from the reaction above?	?
	Answer:		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

• Tranexamic acid, trans-(4-aminomethyl)cyclohexanecarboxylic acid, is used for the treatment of severe haemorrhage in patients with haemophilia.

Marks 4

Provide the requested information for each of the indicated atoms in tranexamic acid.

Atom	Geometric arrangement of the electron pairs around the atom	Hybridisation of the atom	Geometry/shape of σ-bonding electron pairs around the atom
C-1			
C-2			
O-3			
N-4			

• Consider the boiling points of the compounds 1-propanol, 1-propanethiol and 1-propaneselenol shown in the table below?

Compound	CH ₃ CH ₂ CH ₂ OH	CH ₃ CH ₂ CH ₂ SH	CH ₃ CH ₂ CH ₂ SeH
Boiling point (° C)	97.2	67.8	147.0

With reference to intermolecular forces, explain briefly why the boiling points increase in the order CH₃CH₂CH₂SH < CH₃CH₂CH₂OH < CH₃CH₂CH₂SeH.

3

Marks 5

_	Consider	tha fall	1 ~ * * * * * ~	agration
•	Consider	uie IOI	10WIII2	eduation.

TTD 0 ()		3.TT ()		D 0-()		> TTT +/ >
HBrO(aq)	+	$NH_3(aq)$		$BrO^{-}(aq)$	+	$NH_4^{T}(aq)$

2006-J-5

Name all of the species in this equation.

HBrO	
BrO^-	
NH_3	
$\mathrm{NH_4}^+$	

Complete the following table by giving the correct pK_a or pK_b value where it can be calculated. Mark with a cross (x) those cells for which insufficient data have been given to calculate a value.

Species	HBrO	NH ₃	BrO ⁻	NH ₄ ⁺
pK_a of acid	8.64			
pK_b of base		4.76		

Determine on which side (left or right hand side) the equilibrium for the reaction above will lie. Provide a brief rationale for your answer.

• Complete the following table. Make sure you complete the name of the starting material where indicated.

Marks 11

STARTING MATERIAL NAME (where required)	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
OH		Cl
Name:		Ü
Name:	Br ₂ (CCl ₄ solvent)	
O H Name:		ОН
OS	3 M NaOH / heat	
ОН		
	1 M HCl / heat	

Marks

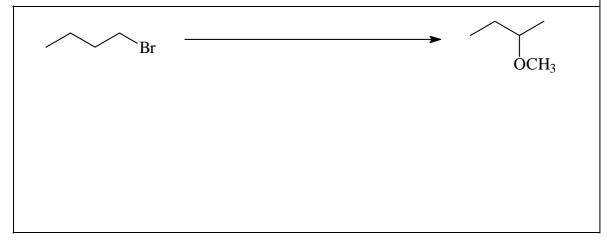
6

• Trifluridine is an analogue of the nucleoside thymidine and is used clinically as an anti-viral agent. It differs from thymidine in that the methyl group is replaced by a trifluoromethyl group.

al
$$CF_3$$
 NH HO N O H HO H O H

Give the molecular formula of trifluridine.

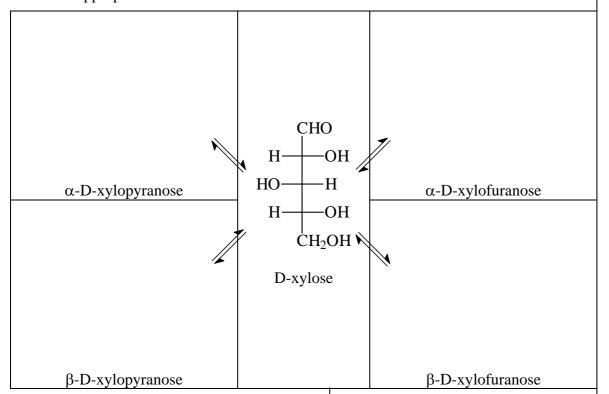
Classify the sugar present in trifluridine as a furanose or pyranose.


Is the sugar present as the α -anomer or β -anomer?

Give an example of a nucleotide derived from trifluridine.

Hydrolysis of trifluridine gives the sugar 2-deoxyribose and a base. Give the structure of the base and the structure of one of its tautomers.

base	tautomer


• Show clearly the reagents you would use to carry out the following chemical conversion. Draw constitutional formulas for any intermediate compounds. Note: More than one step is required.

4

Marks 8

• At equilibrium in aqueous solution, D-xylose exists as a mixture containing the α -pyranose, β -pyranose, α -furanose and β -furanose forms. Draw Haworth formulas in the appropriate boxes below for each of these forms.

Give the formula in Fischer projection, of the product formed when D-xylose is treated with $\left[Ag(NH_3)_2\right]^{\oplus}$ / dilute OH^{\ominus} .

Give the stereoformula of the product(s) formed when β -D-xylopyranose is heated with methanol and an acid catalyst.

• The constitutional formula of the naturally occurring tetrapeptide, Tyr-Lys-Ser-Asn, is shown below.

Marks 11

Give the Fischer projection of L-Lys as the zwitterion.	Complete the stereoformula of (<i>S</i>)-Ser.
	H

Give the constitutional formulas in the correct ionic states of the products obtained from the vigorous acidic hydrolysis (6 M HCl) of the tetrapeptide.

Give the constitutional formulas for the following dipeptides present in water at the indicated pH values.

Tyr-Ser at pH 12	Asn-Lys at pH 1

CHEM1908 - CHEMISTRY 1 LIFE SCIENCES A (ADVANCED) DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \,\mathrm{J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_n = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and $0 \, ^{\circ}\text{C} = 22.4 \, \text{L}$

Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

$$1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa}$$

$$0 \, ^{\circ}\text{C} = 273 \, \text{K}$$

$$1 L = 10^{-3} m^3$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

Deci	mal fract	ions	Deci	Decimal multiples						
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol					
10^{-3}	milli	m	10^{3}	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	M					
10^{-9}	nano	n	10^{9}	giga	G					
10^{-12}	pico	p								

22/48(b) June 2006

CHEM1908 - CHEMISTRY 1 LIFE SCIENCES A (ADVANCED)

Standard Reduction Potentials, E°

Reaction	E° / V
$\text{Co}^{3+}(\text{aq}) + \text{e}^{-} \rightarrow \text{Co}^{2+}(\text{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$\text{Cl}_2 + 2\text{e}^- \rightarrow 2\text{Cl}^-(\text{aq})$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^{+}(aq) + e^{-} \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Cr^{3+}(aq) + 3e^- \rightarrow Cr(s)$	-0.74
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$2H_2O \ + \ 2e^- \ \rightarrow \ H_2(g) \ + \ 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Na^{+}(aq) + e^{-} \rightarrow Na(s)$ $Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.71 -2.87

CHEM1908 - CHEMISTRY 1 LIFE SCIENCES A (ADVANCED)

Useful formulas

Quantum Chemistry	Electrochemistry					
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$					
$\lambda = h/mv$	$Moles\ of\ e^- = It/F$					
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$					
$E = Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$					
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$					
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$					
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$					
Acids and Bases	Gas Laws					
$pK_{w} = pH + pOH = 14.00$	PV = nRT					
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$					
$pH = pK_a + \log\{[A^-] / [HA]\}$						
Colligative properties	Kinetics					
$\pi = cRT$	$t_{1/2} = \ln 2/k$					
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = Ae^{-Ea/RT}$					
p = kc	$ ln[A] = ln[A]_{o} - kt $					
$\Delta T_{ m f} = K_{ m f} m$	$\ln \frac{k_2}{k} = \frac{E_a}{R} \left(\frac{1}{T} - \frac{1}{T} \right)$					
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2$					
Radioactivity	Thermodynamics & Equilibrium					
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$					
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$					
$\ln(N_0/N_{\rm t}) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$					
14 C age = 8033 ln(A_0/A_t)	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$					
Polymers	Mathematics					
$R_{ m g}=\sqrt{rac{nl_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$					
	$ \ln x = 2.303 \log x $					

PERIODIC TABLE OF THE ELEMENTS

3 5 10 11 12 13 14 15 17 18 2 4 7 8 1 16 2 HELIUM HYDROGEN H He 1.008 4.003 3 4 5 8 9 6 10 LITHIUM BERYLLIUM BORON CARBON NITROGEN OXYGEN FLUORINE NEON \mathbf{C} N Ne Li Be B 0 \mathbf{F} 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 14 15 16 12 13 17 18 SODIUM MAGNESIUM ALUMINIUM SILICON PHOSPHORUS SULFUR CHLORINE ARGON Si P Mg S Cl Na Al Ar 22.99 24.31 26.98 28.09 30.97 35.45 39.95 32.07 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 CALCIUM POTASSIUM SCANDIUM TITANIUM VANADIUM CHROMIUM MANGANESE TRON COBALT NICKEL COPPER ZINC GALLIUM GERMANIUM ARSENIC SELENIUM BROMINE KRYPTON K Ti \mathbf{V} Fe Ca Sc Cr Mn Co Ni Cu Zn Ga Ge Se Br Kr As 39.10 47.88 50.94 55.85 72.59 74.92 79.90 83.80 40.08 44.96 52.00 54.94 58.93 58.69 63.55 65.39 69.72 78.96 38 54 37 39 40 42 43 44 47 48 49 50 51 52 53 41 45 46 ZIRCONIUM RUTHENIUM RHODIUM SILVER RUBIDIUM STRONTIUM YTTRIUM NIOBIUM MOLYBDENUM TECHNETIUM PALLADIUM CADMIUM INDIUM ANTIMONY TELLURIUM XENON Rb Sr Y Zr Nb Tc Ru Rh Pd \mathbf{Cd} Sn Sb Te Ι Xe Mo Ag In 85.47 87.62 88.91 91.22 92.91 [98.91] 101.07 102.91 107.87 118.69 121.75 127.60 126.90 131.30 95.94 106.4 112.40 114.82 55 57-71 72 73 75 77 81 82 83 74 76 78 79 80 84 85 86 56 CAESIUM BARIUM HAFNIUM TANTALUM TUNGSTEN RHENIUM OSMIUM IRIDIUM PLATINUM GOLD MERCURY THALLIUM LEAD BISMUTH POLONIUM ASTATINE RADON Cs Hf \mathbf{W} Pb Ba Ta Re Os Ir Pt Au Hg Tl Bi Po At Rn 132.91 137.34 178.49 180.95 183.85 186.2 190.2 192.22 195.09 196.97 200.59 204.37 207.2 208.98 [210.0] [210.0] [222.0] 87 88 89-103 104 105 107 108 109 106 FRANCIUM RADIUM THERFORDIU SEABORGIUM BOHRIUM HASSIUM MEITNERIUM DUBNIUM Rf Sg Bh Hs Fr Ra Db Mt [223.0] [226.0] [261] [262] [266] [262] [265] [266]

LANTHANIDES	57 Lanthanum La	58 CERIUM Ce	59 PRASEODYMIUM Pr	60 NEODYMIUM Nd	61 PROMETHIUM Pm	62 Samarium Sm	63 Europium Eu	64 gadolinium Gd	65 terbium Tb	66 Dysprosium Dy	67 ногмим Но	68 erbium Er	69 тнилим Тт	70 ytterbium \mathbf{Yb}	71 Lu Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
ACTINIDES	89 actinium	90 THORIUM	91 PROTACTINIUM	92 uranium	93 NEPTUNIUM	94 PLUTONIUM	95 AMERICIUM	96 CURIUM	97 BERKELLIUM	98 CALIFORNIUM	99 EINSTEINIUM	100 FERMIUM	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM
	Ac	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]