CHEM1909 (1LS Advanced Course) - November 2004

2004-N-2

- 1.64×10^{-5} photon atom ${ }^{-1} \mathrm{~s}^{-1}$
-

	$s p^{3} d$	
$[: \stackrel{N}{\mathrm{~N}}=\mathrm{C}=\dot{\mathrm{O}} \dot{\dot{0}}]^{-}$	$s p$	$\mathrm{N}-\mathrm{C}-\mathrm{O}$ linear

2004-N-3

- $\Delta H^{\circ}{ }_{\mathrm{f}}=-333.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta S^{\circ}=-82.4 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Three mole of gaseous reactants going to 1 mole of solid and 1 mole of gaseous products. This is a decrease in randomness and hence ΔS° is negative.

2004-N-4

- $\quad 1.28 \mathrm{~mol}$
$3.88 \mathrm{M}^{-2}$

2004-N-5

$4.00 \times 10^{-4} \mathrm{~atm}^{-2}$
$78.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
the equilibrium will shift to the right (products)

2004-N-6

- $\quad 17.0 \mathrm{~g}$
$23.6 \mathrm{mmHg}=0.0311 \mathrm{~atm}$
$100.256{ }^{\circ} \mathrm{C}$

2004-N-7

- $4 \times 10^{-11} \mathrm{M}$
-

cis-diamminedichloroplatinum(II)
trans-diamminedichloroplatinum(II)

2004-N-8

- Reduction: $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Oxidation: $\mathrm{Sn}(\mathrm{s}) \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
Overall: $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{Sn}(\mathrm{s}) \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Sn}^{2+}(\mathrm{aq})$

- $\quad 29.8$ hour

2004-N-9

- $\quad 0.021 \mathrm{M}$
- $\mathrm{pH}=3.60 \quad \mathrm{pOH}=10.40$
- Brønsted-Lowry base is a proton $\left(\mathrm{H}^{+}\right)$acceptor: $\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}{ }^{+}$

Lewis base is a species that can donate a lone pair: $: \mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}{ }^{+}$ Arrhenius base is one that contains OH^{-}ions that are released on dissolution in water. Ammonia generates OH^{-}ions in its reaction with water, it does not contain them in its formula, hence not Arrhenius base.

- blood red blood cells
milk
cell nucleus, ribosomes, etc
water/plasma
water
cell fluid/ctyoplasm
- It acts as a surfactant because the polymer contains both hydrophobic regions ($\mathrm{C}-\mathrm{H}$) and hydrophilic regions $(\mathrm{O}-\mathrm{H}, \mathrm{COOH})$. The hydrophobic areas adhere to the particle and the hydrophilic areas allows dispersal into the aqueous medium.

The long chains of the polymer are dispersed in the water, disrupting the free flow of the water molecules and thus increasing the viscosity of the solution.

2004-N-11

- $\quad 1.2 \times 10^{-6} \mathrm{M} \mathrm{s}^{-1}$

Rate $=k[$ benzene $]\left[\mathrm{HNO}_{3}\right]$
$k=1.2 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$

2004-N-12

Fast equilibrium gives $K=\left[\mathrm{NO}_{2}^{+}\right]\left[\mathrm{HSO}_{4}^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}\right] /\left[\mathrm{HNO}_{3}\right]\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$
$\Rightarrow \quad\left[\mathrm{NO}_{2}^{+}\right]=K\left[\mathrm{HNO}_{3}\right]\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right] /\left[\mathrm{HSO}_{4}^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$

$$
\begin{aligned}
\text { Rate } & =k[\text { benzene }]\left[\mathrm{NO}_{2}^{+}\right] \quad\{\text { The slow step is rate determining }\} \\
& =k[\text { benzene }] K\left[\mathrm{HNO}_{3}\right]\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right] /\left[\mathrm{HSO}_{4}^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}\right] \\
& =k_{1}[\text { benzene }]\left[\mathrm{HNO}_{3}\right] \quad\{\text { consistent with given rate equation }\}
\end{aligned}
$$

- 50 mg

