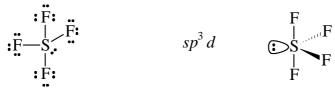

CHEM1909 (1LS Advanced Course) - November 2005

2005-N-2


- $2.40 \times 10^3 \text{ m s}^{-1}$
- $1.3 \times 10^{-9} \,\mathrm{m}$

2005-N-3

 sp^2

trigonal planar

"see-saw"

2005-N-4

• $\Delta H^{\circ}_{f} = 51 \text{ kJ mol}^{-1}$ $\Delta H^{\circ}_{f} = 12 \text{ kJ mol}^{-1}$

2005-N-5

• 0.0102 mol 1.00×10^4

2005-N-6

 1.00×10^{4}

 $-23.6 \text{ kJ mol}^{-1}$

 1.35 kJ mol^{-1}

The amount of NO₂ will increase. As ΔG° is positive, the reaction is non-spontaneous in forward direction and spontaneous in backward direction.

2005-N-7

• $-79.9 \text{ kJ mol}^{-1}$

3.16 kPa

–0.287 °C

NaCl. It gives $2(\frac{3.42}{58.44}) = 0.117$ mol of ions; CaCl₂ gives $3(\frac{3.42}{131.0}) = 0.0783$.

2005-N-8

- More sensible to detect Fe^{3+} . $Fe(OH)_3$ is much less soluble at pH 8 than $Fe(OH)_2$, so it's easier to precipitate.
- hexaaquachromium(III) nitrate dibromobis(ethylenediamine)cobalt(III) chloride

2005-N-9

 $\bullet \qquad 6.0\times 10^{30}\,M$

2005-N-10

- anode: $Sn(s) \rightarrow Sn^{2+}(aq) + 2e^{-}$ cathode: $Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$ Overall: $2Ag^{+}(aq) + Sn(s) \rightarrow Ag(s) + Sn^{2+}(aq)$ $Sn(s) | Sn^{2+}(aq) || Ag^{+}(aq) | Ag(s)$ positive +0.94 V
- During winter, ice crystals form in the stratosphere to produce an aerosol colloid (solid dispersed in gas). The ice crystals provide a catalytic surface for the reaction: $CIO + NO_2 \rightarrow CINO_3$ ClNO₃ thus accumulates during winter. When spring/summer arrives UV radiation from the sun causes decomposition of ClNO₃ and releases Cl radicals which can destroy ozone.

2005-N-11

• 11.19

3.60

• 8.08

0.21

2005-N-12

• 5.98 hours

94%

• neutron:proton ratio = 8:5 = 1.6. It would therefore decay via β^- decay as this would give neutron:proton ratio = 7:6 = 1.2, which is closer to 1.

 ${}^{13}_{5}\mathrm{B} \rightarrow {}^{13}_{6}\mathrm{C} + {}^{0}_{-1}e$

2005-N-13

• Rate = $k[ClO_2]^2[OH^-]$ $k = 2.3 \times 10^2 \text{ M}^{-2} \text{ s}^{-1}$

rate of decrease of $[ClO_2]$ is twice the rate of increase of $[ClO_3^-]$

2005-N-14

Rate = $k[Cl_2]^{\frac{1}{2}}[CHCl_3]$