22/03(a)

NOVEMBER 2003

The University of Sydney

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED)

CONFIDENTIAL

TIME ALLOWED: THREE HOURS

SECOND SEMESTER EXAMINATION

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 17 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Some useful formulas, a Periodic Table and numerical values required for any question may be found on a separate data sheet.
- Pages 11 and 20 are for rough working only.

OFFICIAL USE ONLY

 Multiple choice section

 Marks

 Pages
 Mark

 Gained

 28
 27

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
9	8			
10	9			
12	9			
13	6			
14	5			
15	9			
16	11			
17	6			
18	7			
19	3			
Total	73			

Marks • The conversion of hydroquinone $(C_6H_6O_2(aq))$ to quinone $(C_6H_4O_2(aq))$ is involved in 8 many important biochemical reactions. The bombardier beetle, for example, uses the explosive reaction between hydroquinone and hydrogen peroxide (as described by the equation below) as a defence mechanism. $C_6H_6O_2(aq) + H_2O_2(aq) \rightarrow C_6H_4O_2(aq) + 2H_2O(l)$ From the following reaction data, calculate ΔH_{rxn} for the reaction between 1.00 mol of hydroquinone and 1.00 mol of hydrogen peroxide. $\Delta H_{\rm rxn} = +177.4 \ {\rm kJ} \ {\rm mol}^{-1}$ $C_6H_6O_2(aq) \rightarrow C_6H_4O_2(aq) + H_2(g)$ $O_2(g) + 2H_2O(l) \rightarrow 2H_2O_2(aq)$ $\Delta H_{\rm rxn} = +189.1 \ {\rm kJ \ mol}^{-1}$ $\Delta H_{\rm rxn} = +285.8 \text{ kJ mol}^{-1}$ $H_2O(l) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$ $\Delta H_{\rm rxn} =$ Use the answer you obtained above to calculate the heat liberated (in joules) in the oxidation of 3.86×10^{-4} mol of hydroquinone to quinone. Answer: Calculate the temperature rise of 0.250 g of water for this quantity of heat. (The heat capacity of water, $C_p = 4.184 \text{ J K}^{-1} \text{ g}^{-1}$) Answer:

• Consider the following equilibrium constants, obtained from experiments conducted at 1000 K.	Marks 9
$2SO_2(g) + O_2(g) \implies 2SO_3(g) \qquad K_{p1} = 3.38 \text{ atm}^{-1}$	
$2CO(g) + O_2(g) \implies 2CO_2(g) \qquad K_{p2} = 2.75 \times 10^{20} \text{ atm}^{-1}$	
Calculate the value of K_p at 1000 K for the reaction below.	
$SO_2(g) + CO_2(g) \implies SO_3(g) + CO(g)$	
	1
V _	_
$K_{\rm p} =$	-
Calculate ΔG° for this reaction at 1000 K.	
	_
$\Delta G^{\circ} =$	-
Does this reaction move toward product formation spontaneously or non-spontaneously at 1000 K?	
In which direction will the reaction proceed if the initial reaction conditions are: $pSO_2(g) = 0.1$ atm; $pCO_2(g) = 0.5$ atm; $pSO_3(g) = 0.01$ atm; $pCO(g) = 0.01$ atm?	
	1
Answer:	

CHEM1909

2003-N-3

November 2003

22/03(a)

Marks • In an experiment, NOCl (2.00 mol) was placed in a closed 1.00 L flask. After 9 equilibrium was established at 25 °C, the concentration of NO(g) was 0.66 M. Calculate the value of K_c at 25 °C for the following reaction. 2NOCl(g) $2NO(g) + Cl_2(g)$ $K_{\rm c} =$ Calculate the value of K_p at 25 °C for the reaction above. $K_{\rm p} =$ Given that $\Delta H_{\rm f}^{\circ}$ for NOCl(g) = 51.71 kJ mol⁻¹ and $\Delta H_{\rm f}^{\circ}$ for NO(g) = 90.29 kJ mol⁻¹ at 25 °C, calculate the value of ΔH° for the reaction above. $\Delta H^{\circ}_{rxn} =$ What is the effect upon the [NOCl] of an equilibrium mixture if the temperature is increased? In which direction will the equilibrium shift if the volume of the flask is reduced?

Marks • A newly isolated protein (22.7 mg) was dissolved in 1.45 mL of water at 4 °C and 3 an osmotic pressure of 0.00465 atm was measured. What is the molar mass of the protein? Answer: 3 • The boiling point of pure ethanol is 78.50 °C at 1 atm. A known mass (3.05 g) of ethylene glycol ($C_2H_6O_2$) was added to 500 g of ethanol and the boiling point at 1 atm determined to be 78.62 °C. Calculate the value of the Molal Boiling Point Elevation Constant (K_b) for pure ethanol. Answer:

CHEM1909	2003-N-6	November 2003	22/03(a)
	of chlorine gas generated w um chloride for exactly 1 h	hen a current of 100 A is passed our.	Marks 2
	Ans	wer:	
metal ions and cons The reaction with le Pb ²⁺ If a solution had an	equently may be used to tree and ions is represented by the + EDTA ⁴⁻ $\stackrel{\frown}{\Longrightarrow}$ initial concentration of 1 × ation of uncomplexed lead	and that forms complexes with man eat heavy metal toxicity in the body. he following equilibrium: [PbEDTA] ^{2–} 10 ⁻⁴ M Pb ²⁺ and 0.05 M EDTA, wh ions once equilibrium is established	at
	Ans	wer:	

Deserves			als provided, estimate	enine dinucleotide, NADH. ΔG° for this reaction.	
-	$e + 2H^+ +$			$E^{\circ'} = -0.0185 \text{ V}$	
NAD^+	$+ 2H^{+} + 2e^{-2}$	e ⁻ ~	$NADH + H^+$	$E^{\circ'} = -0.3200 \text{ V}$	
			$\Delta G^{\circ'} =$		
					-
Typical bi	ological concer	$\frac{1}{1}$	lactate and pyruvate a D^{-5} M pyruvate. What	t equilibrium in goat blood	
			b pyruvate. what bgical system at 39 °C,		
healthy go			giour system at sy c,	the temperature of a	
					+
			Answer:		
					1
				precipitate proteins, has	4
			corrosive acid used to 0.050 M solution of the		4
a K_a of 0.1	6 M. What is	the pH of a	0.050 M solution of the		4
a <i>K</i> _a of 0.1	6 M. What is	the pH of a			4
a <i>K</i> _a of 0.1	6 M. What is	the pH of a	0.050 M solution of the $\pm \sqrt{b^2 - 4ac}$		4
a <i>K</i> _a of 0.1	6 M. What is	the pH of a	0.050 M solution of the $\pm \sqrt{b^2 - 4ac}$		4
a <i>K</i> _a of 0.1	6 M. What is	the pH of a	0.050 M solution of the $\pm \sqrt{b^2 - 4ac}$		4
a <i>K</i> _a of 0.1	6 M. What is	the pH of a	0.050 M solution of the $\pm \sqrt{b^2 - 4ac}$		4
a <i>K</i> _a of 0.1	6 M. What is	the pH of a	0.050 M solution of the $\pm \sqrt{b^2 - 4ac}$		4
a <i>K</i> _a of 0.1	6 M. What is	the pH of a	0.050 M solution of the $\pm \sqrt{b^2 - 4ac}$		4
a <i>K</i> _a of 0.1	6 M. What is	the pH of a	0.050 M solution of the $\pm \sqrt{b^2 - 4ac}$		4
a <i>K</i> _a of 0.1	6 M. What is	the pH of a	0.050 M solution of the $\pm \sqrt{b^2 - 4ac}$		4
a <i>K</i> _a of 0.1	6 M. What is	the pH of a	0.050 M solution of the $\pm \sqrt{b^2 - 4ac}$		4
a K_a of 0.1	6 M. What is	the pH of a	0.050 M solution of the $\pm \sqrt{b^2 - 4ac}$		4

Marks • The $H_2PO_4^-$ and HPO_4^{2-} ions play a major role in maintaining the intracellular pH 6 balance. Write balanced equations to show how a solution containing these ions can act as a buffer. For phosphoric acid, $K_{a1} = 7.1 \times 10^{-3}$ M, $K_{a2} = 6.3 \times 10^{-8}$ M, $K_{a3} = 4.2 \times 10^{-13}$ M. At what pH would the H₂PO₄^{-/} / HPO₄²⁻ buffer system be most effective? Why? Calculate the ratio of $H_2PO_4^- / HPO_4^{2-}$ needed to give a solution buffered to a pH of 7.35. 5 • Briefly outline three kinds of isomerism that can arise in coordination complexes, illustrating each type of isomerism with structural formulas. Give the systematic name for any one of your structures.

Name of colloid	Discrete phase	Continuous phase
paint	synthetic polymer	water
One of the components o	f bile acid is sodium deoxychol	late, whose structure is given
	OH	$-CO_2^{\ominus} Na^{\oplus}$
HO	soc	dium deoxycholate
	ng terms: <i>electrostatic</i> , <i>electros</i> olate functions to solubilise fate	
ine way sourchin deoxyen		

22/03(a)

initial $[H^+]$ (N	M)	initial $[H_2O_2]$	initial [Г] (М)	[I ₂] (M) after 1.0 s	
0.10		(M) 0.10	0.10	1.2×10^{-3}	
0.10		0.10	0.06	0.7×10^{-3}	
Determine the r	rate for b	ooth of these con	ditions.		
Determine the o	order, <i>n</i> ,	of the reaction v	with respect to $[\Gamma]$.		
n another set o	fexperii	nents, the reacti	on was found to be	first order with respect	t to
			on was found to be f the rate coefficient	first order with respect k , for the rate law	t to
	O_2 . Dec	luce the value of			t to
both H^+ and H_2	O_2 . Dec	luce the value of			t to
both H^+ and H_2	O_2 . Dec	luce the value of			t to
both H^+ and H_2	O_2 . Dec	luce the value of			t to
both H^+ and H_2	O_2 . Dec	luce the value of			t to
both H^+ and H_2	O_2 . Dec	luce the value of			t to
both H^+ and H_2	O_2 . Dec	luce the value of			t to
both H^+ and H_2	O_2 . Dec	luce the value of			t to
both H^+ and $H_{2'}$ d[I ₂]/d <i>t</i> = <i>k</i>	O ₂ . Dec [[⁻] ⁿ [H ₂ !	luce the value of $O_2][H^+]$, <i>k</i> , for the rate law	t to
Show that the o	O2. Dec $[\Gamma]^n[H_2]$	luce the value of $O_2][H^+]$	f the rate coefficient	owing mechanism.	t to
Show that the o	O ₂ . Dec $[\Gamma]^{n}[H_{2}]^{n}[H_{2}]^{n}$ observed $H^{+} + I$	luce the value of D ₂][H ⁺] kinetics are con	f the rate coefficient sistent with the follo (fa:	owing mechanism.	t to
Show that the o I_2	O_2 . Dec $E[T]^n[H_2]^n$ Observed $H^+ + I$ HI + H	luce the value of $D_2][H^+]$ kinetics are con	the rate coefficient sistent with the follo (fa: $0 + H_2O$ (slo	owing mechanism. st)	t to
Show that the o I_2	O_2 . Dec $E[T]^n[H_2]^n$ Observed $H^+ + I$ HI + H	kinetics are con $H_1^{-} = HI_2O_2 \rightarrow HIO$	the rate coefficient sistent with the follo (fa: $0 + H_2O$ (slo	owing mechanism. st)	t to
Show that the o I_2	O_2 . Dec $E[T]^n[H_2]^n$ Observed $H^+ + I$ HI + H	kinetics are con $H_1^{-} = HI_2O_2 \rightarrow HIO$	the rate coefficient sistent with the follo (fa: $0 + H_2O$ (slo	owing mechanism. st)	t to

• A solution of sodium iodide containing the radioisotope ¹³¹ I has an activity of 20 mCi L ⁻¹ when freshly prepared. Fifteen days later, a patient is given 0.50 mL of this solution. Calculate the dose of ¹³¹ I (in microcurie, μ Ci) received by the patient. The half-life of ¹³¹ I is 8.04 days.	Marks 3
Answer:	-

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED) DATA SHEET

Physical constants	Conversion factors
Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$	1 atm = 760 mmHg = 101.3 kPa
Faraday constant, $F = 96485 \text{ C mol}^{-1}$	0 °C = 273 K
Planck constant, $h = 6.626 \times 10^{-34}$ J s	$1 L = 10^{-3} m^3$
Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$	$1 \text{ Å} = 10^{-10} \text{ m}$
Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$	$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
$= 0.08206 \text{ L atm } \text{K}^{-1} \text{ mol}^{-1}$	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L	

Volume of 1 mole of ideal gas at 1 atm and 0 $^{\circ}$ C = 22.4 L

Useful formulas

Acids and Bases	Kinetics	Radioactivity
$pK_w = pH + pOH = 14$	$k = A e^{-Ea/RT}$	A = kN
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14$	$t_{1/2} = \ln 2/k$	$\ln(N_0/N_t) = kt$
$pH = pK_a + \log\{[A^-] / [HA]\}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$	$t = 8033 \ln(A_0/A_t)$

 $\pi = cRT$

 $\Delta T_{\rm f} = K_{\rm f} m$

 $\Delta T_{\rm b} = K_{\rm b}m$

 $\mathbf{p} = k\mathbf{c}$

Colligative properties

Electrochemistry
$\Delta G^{\circ} = -nFE^{\circ}$
$E = E^{\circ} - (RT/nF) \ln Q$
$E^{\circ} = (RT/nF) \ln K$
Moles of $e^- = It/F$

 $E = hv = hc/\lambda$ $\lambda = h/mu$

Gas Laws PV = nRT

 $(P + n^2 a/V^2)(V - nb) = nRT$

Deci	mal fract	ions	Dec	Decimal multiples						
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol					
10^{-3}	milli	m	10^{3}	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	Μ					
10^{-9}	nano	n	10 ⁹	giga	G					
10^{-12}	pico	р								

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

Thermodynamics & Equilibrium

 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $K_{\rm p} = K_{\rm c} (RT)^{\Delta \rm n}$

1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудко Н 1.00	[2 нешим Не 4.003
3		4											5	6	7	8	9	10
LITHI		RYLLIUM Be											BORON B	CARBON C	NITROGEN N	OXYGEN O	FLUORINE	NEON Ne
6.94		Бе 0.012											D 10.81	12.01	1N 14.01	16.00	F 19.00	20.18
1		12											13	12.01	14.01	16	17.00	18
SODI	ли ма	GNESIUM											ALUMINIUM	SILICON	PHOSPHORUS	SULFUR	CHLORINE	ARGON
N		Mg											Al	Si	Р	S	Cl	Ar
22.9		24.31						9.6	27	20	•	20	26.98	28.09	30.97	32.07	35.45	39.95
19 POTASS		20	21 scandium	22 TITANIU	M VANADIUM	24 снромиим	25 manganese	26 IRON	27 cobalt	28 NICKEL	29 COPPER	30 zinc	31 gallium	32 germanium	33 ARSENIC	34 selenium	35 bromine	36 KRYPTON
K		Ca	Sc	Ti		Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.	10 4	40.08	44.96	47.8	8 50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37		38	39	40		42	43	44	45	46	47	48	49	50	51	52	53	54
RUBID		^{RONTIUM}	YTTRIUM Y			MOLYBDENUM MO	TECHNETIUM TC	RUTHENIUM Ru	RHODIUM Rh	PALLADIUM Pd	SILVER Ag	CADMIUM CADMIUM	INDIUM INDIUM	Sn	ANTIMONY Sb	TELLURIUM TELLURIUM	IODINE	xenon Xe
85.4		87.62	∎ 88.91	91.2		95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55		56	57-71	72		74	75	76	77	78	79	80	81	82	83	84	85	86
CAESI	UM F	BARIUM	0, 11	HAFNIU	M TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
C 132.				Hf		W	Re 186.2	Os 190.2	Ir	Pt	Au 196.97	Hg		Pb	Bi	Po		Rn
87		37.34 88	89-103	178.4 104		183.85 106	186.2	190.2	192.22 109	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
O A FRANC		00 radium	89-105	1U4 RUTHERFOR		1UO SEABORGIUM	IU/ BOHRIUM	1Uð hassium	109 meitnerium									
F		Ra		Rf		Sg	Bh	Hs	Mt									
[223	.0] [2	226.0]		[261] [262]	[266]	[262]	[265]	[266]									
		-							-									1
		57 LANTHAN		8 RIUM	59 praseodymium	60 NEODYMIUM	61 promethium	62 samarium	63 Europium	64 gadoliniu	M TERBI		66 SPROSIUM	67 HOLMIUM	68 Erbium	69 THULIUM	70 ytterbium	71
LANTH	ANIDES	Lanihar		Ce	Pr	Nd	PROMETHIUM	SAMARIUM	EUROPIUM	GABOLINIU			Dy	Носмон	ErBIOM	Tm	YTTERBIUM	LUTERIOM
		138.9		0.12	140.91	144.24	[144.9]	150.4	151.96	157.25			-	164.93	167.26	168.93	173.04	174.97
		89		0	91	92	93	94	95	96	97		98	99	100	101	102	103
ACTIN	NIDES	ACTINI		пим h	PROTACTINIUM Do	URANIUM U	NEPTUNIUM	PLUTONIUM D11	AMERICIUM		BERKEL				FERMIUM	MENDELEVIUM	NOBELIUM	
		A ([227.		. n 2.04	Pa [231.0]	U 238.03	Np [237.0]	Pu [239.1]	Am [243.1]	Cm [247.1			Cf (52.1] [Es 252.1]	Fm [257.1]	Md [256.1]	No [259.1]	Lr [260.1]
			.0] 23.	0-	[231.0]	230.03	[237.0]	[237.1]	[273.1]	[27/.1] [247	••] [2		202.1]	[201.1]	[200.1]	[237.1]	[200.1]

PERIODIC TABLE OF THE ELEMENTS