CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED)

CONFIDENTIAL

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY		SID	
NAME		NUMBER	
OTHER		TABLE	
NAMES		NUMBER	

OFFICIAL USE ONLY
Multiple choice section

Short answer section

Page	Marks			Marker
	Max	Gained		
9	8			
10	9			
12	9			
13	6			
14	5			
15	9			
16	11			
17	6			
18	7			
19	3			
Total	73			

- The conversion of hydroquinone $\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}(\mathrm{aq})\right)$ to quinone $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{aq})\right)$ is involved in

Marks 8 many important biochemical reactions. The bombardier beetle, for example, uses the explosive reaction between hydroquinone and hydrogen peroxide (as described by the equation below) as a defence mechanism.

$$
\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

From the following reaction data, calculate ΔH_{rxn} for the reaction between 1.00 mol of hydroquinone and 1.00 mol of hydrogen peroxide.

$$
\begin{array}{ll}
\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) & \Delta H_{\mathrm{rxn}}=+177.4 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) & \Delta H_{\mathrm{rxn}}=+189.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) & \Delta H_{\mathrm{rxn}}=+285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

Use the answer you obtained above to calculate the heat liberated (in joules) in the oxidation of $3.86 \times 10^{-4} \mathrm{~mol}$ of hydroquinone to quinone.

Answer:

Calculate the temperature rise of 0.250 g of water for this quantity of heat. (The heat capacity of water, $C_{\mathrm{p}}=4.184 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$)

- Consider the following equilibrium constants, obtained from experiments conducted at 1000 K .

$$
\begin{array}{lll}
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \rightleftharpoons & \rightleftharpoons \\
2 \mathrm{SO} & (\mathrm{~g}) & K_{\mathrm{p} 1}=3.38 \mathrm{~atm}^{-1} \\
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \rightleftharpoons & 2 \mathrm{CO}_{2}(\mathrm{~g})
\end{array} \quad K_{\mathrm{p} 2}=2.75 \times 10^{20} \mathrm{~atm}^{-1} .
$$

Calculate the value of K_{p} at 1000 K for the reaction below.

$$
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

\square
Calculate ΔG° for this reaction at 1000 K .

In which direction will the reaction proceed if the initial reaction conditions are: $p \mathrm{SO}_{2}(\mathrm{~g})=0.1 \mathrm{~atm} ; p \mathrm{CO}_{2}(\mathrm{~g})=0.5 \mathrm{~atm} ; p \mathrm{SO}_{3}(\mathrm{~g})=0.01 \mathrm{~atm} ; p \mathrm{CO}(\mathrm{g})=0.01 \mathrm{~atm}$?

- In an experiment, $\mathrm{NOCl}(2.00 \mathrm{~mol})$ was placed in a closed 1.00 L flask. After equilibrium was established at $25^{\circ} \mathrm{C}$, the concentration of $\mathrm{NO}(\mathrm{g})$ was 0.66 M . Calculate the value of K_{c} at $25^{\circ} \mathrm{C}$ for the following reaction.

$$
2 \mathrm{NOCl}(\mathrm{~g}) \quad \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

Calculate the value of K_{p} at $25^{\circ} \mathrm{C}$ for the reaction above.

Given that $\Delta H_{\mathrm{f}}{ }^{\circ}$ for $\operatorname{NOCl}(\mathrm{g})=51.71 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta H_{\mathrm{f}}{ }^{\circ}$ for $\mathrm{NO}(\mathrm{g})=90.29 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $25^{\circ} \mathrm{C}$, calculate the value of ΔH° for the reaction above.

What is the effect upon the $[\mathrm{NOCl}]$ of an equilibrium mixture if the temperature is increased?

In which direction will the equilibrium shift if the volume of the flask is reduced?

- A newly isolated protein (22.7 mg) was dissolved in 1.45 mL of water at $4^{\circ} \mathrm{C}$ and

Marks an osmotic pressure of 0.00465 atm was measured. What is the molar mass of the protein?

Answer:

- The boiling point of pure ethanol is $78.50^{\circ} \mathrm{C}$ at 1 atm . A known mass $(3.05 \mathrm{~g})$ of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ was added to 500 g of ethanol and the boiling point at 1 atm determined to be $78.62^{\circ} \mathrm{C}$. Calculate the value of the Molal Boiling Point Elevation Constant (K_{b}) for pure ethanol.

Answer:

- Calculate the mass of chlorine gas generated when a current of 100 A is passed through molten lithium chloride for exactly 1 hour.

Answer:

- Ethylenediamine tetraacetate $\left(\right.$ EDTA $\left.^{4-}\right)$ is a ligand that forms complexes with many metal ions and consequently may be used to treat heavy metal toxicity in the body. The reaction with lead ions is represented by the following equilibrium:

$$
\mathrm{Pb}^{2+}+\mathrm{EDTA}^{4-} \quad \rightleftharpoons \quad[\mathrm{PbEDTA}]^{2-}
$$

If a solution had an initial concentration of $1 \times 10^{-4} \mathrm{M} \mathrm{Pb}^{2+}$ and 0.05 M EDTA, what will be the concentration of uncomplexed lead ions once equilibrium is established? $K_{\text {stab }}$ for $[\mathrm{PbEDTA}]^{2-}$ is $1 \times 10^{18} \mathrm{M}^{-1}$.

- An important biological redox reaction is the reduction of pyruvate, $\mathrm{CH}_{3} \mathrm{COCO}_{2}^{-}$, to lactate, $\mathrm{CH}_{3} \mathrm{CHOHCO}_{2}^{-}$, by reaction with nicotinamide adenine dinucleotide, NADH. Using the standard reduction potentials provided, estimate ΔG° for this reaction.

$$
\begin{array}{ll}
\text { Pyruvate }+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \text { Lactate } & E^{\circ \prime}=-0.0185 \mathrm{~V} \\
\mathrm{NAD}^{+}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{NADH}+\mathrm{H}^{+} & E^{\circ \prime}=-0.3200 \mathrm{~V}
\end{array}
$$

$$
\Delta G^{\circ}=
$$

Typical biological concentrations of lactate and pyruvate at equilibrium in goat blood are $1.0 \times 10^{-3} \mathrm{M}$ lactate and $6.0 \times 10^{-5} \mathrm{M}$ pyruvate. What ratio of [NADH] to $\left[\mathrm{NAD}^{+}\right]$would you find in this biological system at $39^{\circ} \mathrm{C}$, the temperature of a healthy goat?

Answer:

- Trichloroacetic acid, $\mathrm{CCl}_{3} \mathrm{COOH}$, a corrosive acid used to precipitate proteins, has a K_{a} of 0.16 M . What is the pH of a 0.050 M solution of trichloroacetic acid?
Hint: If $\mathrm{ax}^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
- The $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$and $\mathrm{HPO}_{4}{ }^{2-}$ ions play a major role in maintaining the intracellular pH balance. Write balanced equations to show how a solution containing these ions can act as a buffer.

For phosphoric acid, $K_{\mathrm{a} 1}=7.1 \times 10^{-3} \mathrm{M}, K_{\mathrm{a} 2}=6.3 \times 10^{-8} \mathrm{M}, K_{\mathrm{a} 3}=4.2 \times 10^{-13} \mathrm{M}$. At what pH would the $\mathrm{H}_{2} \mathrm{PO}_{4}^{-} / \mathrm{HPO}_{4}{ }^{2-}$ buffer system be most effective? Why?
\qquad
Calculate the ratio of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-} / \mathrm{HPO}_{4}{ }^{2-}$ needed to give a solution buffered to a pH of 7.35 .
\square

- Briefly outline three kinds of isomerism that can arise in coordination complexes, illustrating each type of isomerism with structural formulas. Give the systematic name for any one of your structures.
- Give three examples of colloids in biological systems, and complete the following table. Paint is given as an example of a synthetic (non-biological) system.

Name of colloid	Discrete phase	Continuous phase
paint	synthetic polymer	water

- One of the components of bile acid is sodium deoxycholate, whose structure is given below.

Which one of the following terms: electrostatic, electrosteric or steric, best describes the way sodium deoxycholate functions to solubilise fats. Give a brief explanation.

- In the reaction with the stoichiometry $2 \mathrm{H}^{+}+2 \mathrm{I}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$ the following data were obtained.

initial $\left[\mathrm{H}^{+}\right](\mathrm{M})$	initial $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ (M)	initial $\left[\mathrm{I}^{-}\right](\mathrm{M})$	$\left[\mathrm{I}_{2}\right](\mathrm{M})$ after 1.0 s
0.10	0.10	0.10	1.2×10^{-3}
0.10	0.10	0.06	0.7×10^{-3}

Determine the rate for both of these conditions.

Determine the order, n, of the reaction with respect to $\left[\mathrm{I}^{-}\right]$.

In another set of experiments, the reaction was found to be first order with respect to both H^{+}and $\mathrm{H}_{2} \mathrm{O}_{2}$. Deduce the value of the rate coefficient, k, for the rate law $\mathrm{d}\left[\mathrm{I}_{2}\right] / \mathrm{d} t=k\left[\mathrm{I}^{-}\right]^{\mathrm{n}}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{H}^{+}\right]$

Show that the observed kinetics are consistent with the following mechanism.

$$
\begin{aligned}
& \mathrm{H}^{+}+\mathrm{I}^{-} \rightleftharpoons \mathrm{HI} \\
& \mathrm{HI}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{HIO}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{HIO}+\mathrm{HI} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}
\end{aligned}
$$

- A solution of sodium iodide containing the radioisotope ${ }^{131}$ I has an activity of $20 \mathrm{mCi} \mathrm{L}^{-1}$ when freshly prepared. Fifteen days later, a patient is given 0.50 mL of this solution. Calculate the dose of ${ }^{131} \mathrm{I}$ (in microcurie, $\mu \mathrm{Ci}$) received by the patient. The half-life of ${ }^{131} \mathrm{I}$ is 8.04 days.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED) DATA SHEET

Physical constants

Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J}$ s
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0{ }^{\circ} \mathrm{C}=22.4 \mathrm{~L}$

Useful formulas

Acids and Bases

$\mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\}$

Electrochemistry

$\Delta G^{\circ}=-n F E^{\circ}$
$E=E^{\circ}-(R T / n F) \ln Q$
$E^{\circ}=(R T / n F) \ln K$
Moles of $e^{-}=I t / F$

Quantum Chemistry

$E=h \nu=h c / \lambda$
$\lambda=h / m u$

Kinetics

$k=A \mathrm{e}^{-E \mathrm{a} / R T}$
$t_{1 / 2}=\ln 2 / k$
$\ln [\mathrm{A}]=\ln [\mathrm{A}]_{\mathrm{o}}-k t$

Colligative properties
$\pi=\mathrm{c} R T$
$\mathrm{p}=k \mathrm{c}$
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m$
$\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m$

Radioactivity

$A=k N$
$\ln \left(N_{0} / N_{\mathrm{t}}\right)=k t$
$t=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$

Thermodynamics \& Equilibrium

$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
$\Delta G=\Delta G^{\circ}+R T \ln Q$
$\Delta G^{\circ}=-R T \ln K$
$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta \mathrm{n}}$

Gas Laws
$P V=n R T$
$\left(P+n^{2} a / V^{2}\right)(V-n b)=n R T$

Decimal fractions
Fraction Prefix Symbol

10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples
Multiple Prefix Symbol
10^{3} kilo k
10^{6} mega M
10^{9} giga $\quad G$

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
																	$\begin{gathered} \hline 2 \\ \text { ницм } \\ \mathbf{H e} \\ 4.003 \\ \hline \end{gathered}$
$\begin{gathered} \hline 3 \\ \text { ининмм } \\ \mathbf{L i} \\ 6.941 \end{gathered}$	 вегуцим Be 9.012 12											$\begin{gathered} \hline \begin{array}{c} 5 \\ \text { Borov } \\ \mathbf{B} \\ 10.81 \\ \hline \end{array}{ }^{2} \end{gathered}$	$\begin{gathered} \hline 6 \\ \begin{array}{c} \text { c.Rвov } \\ \mathbf{C} \end{array} \\ 12.01 \end{gathered}$	$\begin{gathered} \hline 7 \\ \substack{\text { sirocen }} \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} \hline 8 \\ \substack{8 \\ \text { oxcen }} \\ \mathbf{O} \end{gathered}$	$\begin{gathered} 9 \\ \substack{\text { fuorne } \\ \mathbf{F} \\ 19.00} \end{gathered}$	$\begin{gathered} \hline 10 \\ \text { Neov } \\ \mathbf{N e} \\ 20.18 \end{gathered}$
$\begin{gathered} \hline 11 \\ \text { sonvem } \\ \mathbf{N a} \\ 22.99 \\ \hline \end{gathered}$	$\mathbf{1 2}$ мисеним $\mathbf{M g}$ 24.31											$\begin{gathered} 13 \\ \substack{\text { мцмммммм } \\ \text { Al } \\ 26.98 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 14 \\ \text { sulcow } \\ \mathbf{S i} \\ 28.09 \\ \hline \end{gathered}$	15 phosphorus \mathbf{P} 30.97 33	$\begin{gathered} \hline 16 \\ \text { surfur } \\ \mathbf{S} \\ 32.07 \end{gathered}$	$\begin{gathered} 17 \\ \begin{array}{c} \text { chorve } \\ \text { Cl } \end{array} \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \begin{array}{c} 186 \text { nen } \\ \mathbf{A r} \\ 39.95 \end{array} \end{gathered}$
$\begin{gathered} \hline 19 \\ \text { porassum } \\ \mathbf{K} \\ 39.10 \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ \text { сангм } \\ \text { Ca } \\ 40.08 \end{gathered}$	$\begin{gathered} \hline 21 \\ \underset{\text { scanpum }}{\text { Sc }} \\ 44.96 \end{gathered}$	$\begin{gathered} \hline 22 \\ \substack{\text { тимлмм } \\ \mathbf{T i} \\ 47.88} \end{gathered}$	$\begin{gathered} 23 \\ \substack{\text { vaxipum } \\ \mathbf{V} \\ 50.94} \end{gathered}$	$\begin{gathered} 24 \\ \begin{array}{c} \text { cıRoмuм } \\ \mathbf{C r} \\ 52.00 \end{array} \end{gathered}$	25 Manganser $\mathbf{M n}$ 54.94	$\begin{gathered} \hline 26 \\ \text { иrov } \\ \mathbf{F e} \\ 55.85 \end{gathered}$	$\begin{gathered} \hline 27 \\ \text { соват } \\ \text { Co } \\ 58.93 \\ \hline \end{gathered}$		$\begin{gathered} \hline 29 \\ \text { coprer } \\ \mathbf{C u} \\ 63.55 \end{gathered}$	$\begin{gathered} \hline 30 \\ \text { zunc } \\ \mathbf{Z n} \\ 65.39 \end{gathered}$	$\begin{gathered} \hline 31 \\ \text { Gаинм } \\ \mathbf{G a} \\ 69.72 \end{gathered}$	32 $\left.\begin{array}{c}\text { GвRмNпм } \\ \mathbf{G e} \\ 72.59\end{array}\right]$	$\begin{gathered} \hline 33 \\ \text { ARENIC } \\ \text { As } \\ 74.92 \\ \hline \end{gathered}$	$\begin{gathered} \hline 34 \\ \text { Shentum } \\ \mathbf{S e} \\ 78.96 \\ \hline \end{gathered}$		$\begin{gathered} 36 \\ \text { ккеvron } \\ \mathbf{K r} \\ 83.80 \end{gathered}$
$\begin{gathered} \hline 37 \\ \text { Ruвиним } \\ \mathbf{R b} \\ 85.47 \\ \hline \end{gathered}$	$\begin{gathered} \hline 38 \\ \substack{\text { strontuм } \\ \mathbf{S r} \\ 87.62} \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} 39 \\ \text { ттвимм } \\ \mathbf{Y} \\ 88.91 \end{array} \end{gathered}$	$\begin{gathered} 40 \\ \begin{array}{c} \text { zrвсоним } \\ \mathbf{Z r} \\ 91.22 \end{array} \end{gathered}$	$\begin{gathered} \hline 41 \\ \text { мовим } \\ \mathbf{N b} \\ 92.91 \end{gathered}$	42 моиввеком $\mathbf{M o}$ 95.94	$\begin{gathered} \hline 43 \\ \text { теснетем } \\ \mathbf{T c} \\ {[98.91]} \end{gathered}$	$\begin{gathered} \hline 44 \\ \text { Rетиелмм } \\ \mathbf{R u} \\ 101.07 \end{gathered}$	$\begin{gathered} \hline 45 \\ \text { Rноотм } \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} \hline 46 \\ \text { рицаним } \\ \text { Pd } \\ 106.4 \end{gathered}$	$\begin{gathered} \hline 47 \\ \begin{array}{c} \text { sinver } \\ \mathbf{A g} \\ 107.87 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ \substack{\text { сампим } \\ \text { Cd } \\ 112.40} \end{gathered}$	$\begin{gathered} \hline 49 \\ \text { мопмм } \\ \mathbf{I n} \\ 114.82 \end{gathered}$	$\begin{gathered} \hline 50 \\ \text { riv } \\ \mathbf{S n} \\ 118.69 \end{gathered}$	$\begin{gathered} \hline 51 \\ \substack{\text { Anvimony } \\ \mathbf{S b} \\ 121.75 \\ \hline \\ \hline \\ \hline \\ \hline} \end{gathered}$	$\begin{gathered} \hline 52 \\ \text { тешиним } \\ \mathbf{T e} \\ 127.60 \\ \hline \end{gathered}$	$\begin{gathered} \hline 53 \\ \substack{\text { tonNe } \\ \text { I } \\ 126.90} \end{gathered}$	$\begin{gathered} \hline 54 \\ \substack{\text { xerov } \\ \mathbf{X e} \\ 131.30} \end{gathered}$
$\begin{array}{\|c\|} \hline 55 \\ \text { c.essum } \\ \text { Cs } \\ 132.91 \\ \hline \end{array}$	$\begin{gathered} \hline 56 \\ \text { вавा।м } \\ \mathbf{B a} \\ 137.34 \\ \hline \end{gathered}$	57－71	$\begin{gathered} \hline 72 \\ \begin{array}{c} \text { нелеми } \\ \mathbf{H f} \\ 178.49 \end{array} \end{gathered}$	$\begin{gathered} \hline 73 \\ \text { талтим } \\ \mathbf{T a} \\ 180.95 \\ \hline \end{gathered}$	$\begin{gathered} 74 \\ \substack{74 \\ \text { tuxstre } \\ \mathbf{W} \\ 183.85 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 75 \\ \text { Rнемим } \\ \mathbf{R e} \\ 186.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 76 \\ \text { osмитм } \\ \text { Os } \\ 190.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 77 \\ \begin{array}{c} \text { rempuм } \\ \mathbf{I r} \\ 192.22 \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ⿱ 䒑 土 刂 \end{gathered}$	$\begin{gathered} \hline 78 \\ \text { риттимм } \\ \mathbf{P t} \\ 195.09 \\ \hline \end{gathered}$	$\begin{gathered} 79 \\ \text { cold } \\ \mathbf{A u} \\ 196.97 \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ \text { MERCLIRY } \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{gathered} 81 \\ \text { тиминм } \\ \text { Tl } \\ 204.37 \\ \hline \end{gathered}$	$\begin{gathered} \hline 82 \\ \text { LRND } \\ \mathbf{P b} \\ 207.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 83 \\ \text { віммти } \\ \mathbf{B i} \\ 208.98 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} 84 \\ \text { pooswem } \\ \mathbf{P o} \\ {[210.0]} \end{array} \\ \hline \end{array}$	$\begin{gathered} \hline 85 \\ \text { Astatine } \\ \text { At } \\ {[210.0]} \end{gathered}$	$\begin{gathered} \hline 86 \\ \text { R1Dov } \\ \mathbf{R n} \\ {[222.0]} \end{gathered}$
$\begin{array}{\|c} \hline 87 \\ \text { francum } \\ \mathbf{F r} \\ {[223.0]} \\ \hline \end{array}$	$\begin{gathered} \hline 88 \\ \text { Ranw } \\ \mathbf{R a} \\ {[226.0]} \\ \hline \end{gathered}$	89－103		$\begin{gathered} 105 \\ \text { ровмим } \\ \text { Db } \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 106 \\ \text { sеввокалм } \\ \mathbf{S g} \\ {[266]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 107 \\ \text { вонким } \\ \mathbf{B h} \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} 108 \\ \text { nussum } \\ \mathbf{H s} \\ {[265]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 109 \\ \text { мептввuм } \\ \text { Mt } \\ {[266]} \\ \hline \end{gathered}$									

LANTHANIDES	$\begin{gathered} \hline 57 \\ \text { Lамтнамм } \\ \mathbf{L a} \\ 138.91 \\ \hline \end{gathered}$			$\begin{gathered} \hline 60 \\ \text { меормпм } \\ \text { Nd } \\ 144.24 \\ \hline \end{gathered}$	61 рвомвтним $\mathbf{P m}$ $[144.9]$ 93		$\begin{gathered} 63 \\ \left.\begin{array}{c} \text { виворим } \\ \text { Eu } \\ 151.96 \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ⿱ 䒑 土\right) \end{gathered}$	$\begin{gathered} 64 \\ \text { Ginounum } \\ \text { Gd } \\ 157.25 \\ \hline \end{gathered}$	$\begin{gathered} \hline 65 \\ \text { теввім } \\ \mathbf{T b} \\ 158.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 66 \\ \text { Dxserosum } \\ \text { Dy } \\ 162.50 \\ \hline \end{gathered}$	$\begin{gathered} 67 \\ \text { ноимим } \\ \mathbf{H o} \\ 164.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 68 \\ \text { евном } \\ \mathbf{E r} \\ 167.26 \\ \hline \end{gathered}$	$\begin{gathered} 69 \\ \text { тинимм } \\ \mathbf{T m} \\ 168.93 \\ \hline \end{gathered}$	$\begin{gathered} 70 \\ \text { мттввнм } \\ \mathbf{Y b} \\ 173.04 \\ \hline \end{gathered}$	$\begin{gathered} \hline 71 \\ \text { новттм } \\ \mathbf{L u} \\ 174.97 \\ \hline \end{gathered}$
ACTINIDES	$\begin{gathered} \hline 89 \\ \text { Астлим } \\ \text { Ас } \\ {[227.0]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 90 \\ \text { 9новим } \\ \mathbf{T h} \\ 232.04 \\ \hline \end{gathered}$	91 $\left.\begin{array}{c}\text { protactinuм } \\ \mathbf{P a} \\ {[231.0]}\end{array}\right]$	$\begin{gathered} \hline 92 \\ \hline \mathbf{\text { tимпмм }} \mathbf{U} \\ 238.03 \end{gathered}$	$\begin{gathered} 93 \\ \mathbf{~ м е р т м и м ~} \\ \mathbf{N p} \\ {[237.0]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 94 \\ \text { pultrinum } \\ \mathbf{P u} \\ {[239.1]} \\ \hline \end{gathered}$	$\begin{gathered} 95 \\ \text { Амввнстм } \\ \mathbf{A m} \\ {[243.1]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 96 \\ \text { črıuм } \\ \text { Cm } \\ {[247.1]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 97 \\ \text { веккним } \\ \mathbf{B k} \\ {[247.1]} \\ \hline \end{gathered}$	98 саиғквлм $\mathbf{C f}$ $[252.1]$	99 $\left.\begin{array}{c}\text { Enstrenum } \\ \text { ES } \\ {[252.1]}\end{array}\right]$	$\begin{gathered} 100 \\ \text { 案位 } \\ \mathbf{F m} \\ {[257.1]} \end{gathered}$	$\begin{gathered} \hline 101 \\ \text { мек⿻上丨匕रum } \\ \text { Md } \\ {[256.1]} \\ \hline \end{gathered}$	$\begin{gathered} 102 \\ \text { моввим } \\ \text { No } \\ {[259.1]} \end{gathered}$	$\begin{gathered} 103 \\ \text { L"wrectum } \\ \mathbf{L r} \\ {[260.1]} \end{gathered}$

