22/03(a)

NOVEMBER 2004

The University of Sydney

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED)

CONFIDENTIAL

TIME ALLOWED: THREE HOURS

SECOND SEMESTER EXAMINATION

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	Ν	SID NUMBER	
OTHER NAMES		TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 13, 16 and 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section Marks Pages Mark Gained 2-10 36

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
11	8			
12	6			
14	5			
15	7			
17	8			
18	4			
19	6			
20	6			
21	5			
22	5			
23	4			
Total	64			

•	which e of 10.0		h wavelength λ = ray energy at a r	= 0.154 nm. If an anode made ate of 2.00 kJ s ^{-1} , at what rate are	Marks 3
			ANSWER	:	_
•		ewis structures for the follow entral atom (underlined) and		r ions, indicate the hybridisation hape of the molecule or ion.	5
S	pecies	Lewis structure	Hybridisation	Sketch of 3-D shape of species	
2	<u>S</u> OF ₄				
1	1 <u>C</u> O⁻				
_	Draw a	ll resonance contributors to th	ne NCO ⁻ ion.		
					+

Marks • The final step in the industrial production of urea, $CO(NH_2)_2$, is: 6 $CO_2(g) + 2NH_3(g) \rightarrow H_2O(g) + CO(NH_2)_2(s)$ $\Delta H^\circ = -90.1 \text{ kJ mol}^{-1}$ Using the following data, calculate the standard enthalpy of formation ΔH°_{f} of solid urea. $\Delta H^{\circ} = -1267.2 \text{ kJ mol}^{-1}$ $4NH_3(g) + 3O_2(g) \rightarrow 6H_2O(g) + 2N_2(g)$ $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H^{\circ} = -393.5 \text{ kJ mol}^{-1}$ $\Delta H^{\circ} = -483.6 \text{ kJ mol}^{-1}$ $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$ $\Delta H^{\circ}_{\rm f} =$ The formation of urea in this process is only spontaneous above 821 °C. What is the value of the entropy change ΔS° (in J K⁻¹ mol⁻¹) for the reaction? $\Delta S^{\circ} =$ Rationalise the sign of ΔS° in terms of the physical states of the reactants and products.

Marks • Equal volumes of carbon monoxide and hydrogen gas are introduced into a sealed 5 4.5 L flask at 1200 K and the following equilibrium is established. $CO(g) + 3H_2(g) \iff CH_4(g) + H_2O(g)$ $\Delta H^{\circ} = -205.9 \text{ kJ mol}^{-1}$ At equilibrium, the flask contains 0.22 mol of CH₄ and the total pressure in the flask is 46.4 atm. Calculate the amount of $H_2(g)$ (in mol) that was initially introduced into the flask. Answer: In a separate experiment, it is determined that the reaction is in equilibrium when the same 4.5 L flask contains 0.18 mol of CH₄, 0.24 mol of H₂O, 0.82 mol of CO and 0.65 mol of H₂ at 1200 K. Calculate the concentration equilibrium constant, K_c , for this temperature.

THIS QUESTION CONTINUES ON THE NEXT PAGE

CHEM1909	2004-N-5	November 2004	22/03(a)
Calculate the parti	al pressure equilibrium	constant, $K_{\rm p}$, at 1200 K.	Mark 7
	[<i>K</i> _p =	
What is the standa 1200 K?		G° for the forward reaction (in kJ mol ⁻	⁻¹) at
1200 11.			
	r		
		$\Delta G^{\circ}=$	
What will be the maintains a consta		n if CO(g) is injected into the flask,	which
What will be the e	effect on the equilibrium	if the temperature is decreased?	
What will be the e	effect on the equilibrium	if the volume of the flask is decreased	?
What will be the that liquid water c		n if the walls of the flask are refrigerat	ted so

CHEM1909	2004-N-6	November 2004	22/03(a)
		nL of water at 25 °C. The osmotic pressure ss of sucrose that was originally dissolved?	
		Answer:	
Calculate the vapour p density of water is 0.9	pressure of water at 97 g mL ^{-1} and the	bove this solution, given that at 25 °C, the vapour pressure of water is 23.8 mmHg.	
		Answer:	
		that temperature will the water boil? that (K_b) for pure water is 0.512 °C kg mol ⁻¹ .	
		Γ.	
		Answer:	

CHEM1909	2004-N-7	November 2004	22/03(a)
Calculate the mol The solubility pro	ar solubility of $Fe(OH)_3$ in a duct constant of $Fe(OH)_3$ is 4	pH = 5.0 buffer solution. $1 \times 10^{-38} M^4$.	Marks 2
	[
	Ans	wer:	
	a pair of geometric isomers.	of types of isomerism. Draw a si Label your diagram with the syst	

Marks • A voltaic cell is constructed with a $Cr_2O_7^{2-}/Cr^{3+}$ (in acidic solution) half cell and a Sn/Sn^{2+} half cell. Measurement shows that the Sn electrode is negative. Write the 3 balanced half equations and the overall spontaneous reaction. reduction half equation oxidation half equation overall reaction 3 • How many hours will it take to produce 1.00 kg of aluminium metal from a molten Al^{3+} salt, using a current of 100 A? Answer:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

CHEM1909	2004-N-9	November 2004	22/03(a)
• Find the concentra The acid dissociati	tion of H_3O^+ in a 0.60 M on constant of HNO_2 is <i>R</i>	aqueous solution of nitrous acid. $K_a = 7.1 \times 10^{-4} \text{ M.}$	Marks 2
	ľ	Answer:	
• An aqueous solution pOH of the solution		$O^+] = 2.54 \times 10^{-4} M$. Find the pH and	1
pH =	r	oOH =	
• Ammonia, NH ₃ , is base. Why?	a Brønsted-Lowry base a	and a Lewis base, but not an Arrhenius	3

CHEM1909

22/03(a)

Marks • The nitration of benzene to form nitrobenzene may be written with the following 5 stoichiometry. + HNO₃ NO₂ H_2O +The reaction was performed in the presence of excess concentrated sulfuric acid and the following data were obtained. initial [benzene] initial [nitric acid] Experiment [nitrobenzene] (M) number (M) (M) after 100 s 1.2×10^{-4} 0.010 1.0 1 2.4×10^{-4} 2 0.020 1.0 3 0.020 0.50 1.2×10^{-4} Determine the rate of the reaction for Experiment 1. Answer: What is the rate equation for this reaction? Rate = What is the value of the rate constant? k =

THIS QUESTION CONTINUES ON THE NEXT PAGE

Show that the observed kinetics are consistent with the following mechanism.	Marks 2
$HNO_3 + H_2SO_4 \implies NO_2^+ + HSO_4^- + H_2O$ (fast)	
$ + NO_2^{\oplus} \longrightarrow H_{NO_2}^{\oplus} (slow) $	
$ \underbrace{\overset{\oplus}{\longrightarrow}}_{NO_2}^H \longrightarrow \underbrace{\overset{\oplus}{\longrightarrow}}_{NO_2}^{NO_2} + H^{\oplus} $ (fast)	
• A watch contains a radioactive substance with a decay constant of 1.4×10^{-2} year ⁻¹ . After 50 years 25 mg of the radioactive material remains. Calculate the amount originally present.	2
Answer:	

22/03(b)

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED)

DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s^{-1}

Deci	mal fract	ions	Decimal multiples
Fraction	Prefix	Symbol	Multiple Prefix Symbol
10^{-3}	milli	m	10^3 kilo k
10^{-6}	micro	μ	10^6 mega M
10^{-9}	nano	n	10 ⁹ giga G
10^{-12}	pico	р	

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED)

Standard Reduction Potentials, E°

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44
$Cr^{3+}(aq) + 3e^- \rightarrow Cr(s)$	-0.74
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED)

Useful Formulas

Quantum Chemistry
$E = hv = hc/\lambda$
$\lambda = h/mu$
$4.5k_{\rm B}T = hc/\lambda$
$E = Z^2 E_{\rm R}(1/n^2)$

Kinetics

$k = A e^{-Ea/RT}$	$A = \lambda N$
$t_{\frac{1}{2}} = \ln 2/k$	$\ln(N_0/N_t) = \lambda t$
$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$	14 C age = 8033 ln(A_0/A_t)

Gas Laws Acids and Bases PV = nRT $pK_{w} = pH + pOH = 14.00$ $(P + n^2 a/V^2)(V - nb) = nRT$

Colligative Properties $\pi = cRT$ p = kc $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $\Delta T_{\rm f} = K_{\rm f} m$ $\Delta T_{\rm b} = K_{\rm b}m$

Polymers

$$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$$

Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$

Radioactivity

$$A = \lambda N$$

ln(N₀/N_t) = λt
¹⁴C age = 8033 ln(A₀/A_t)

 $pK_w = pK_a + pK_b = 14.00$ $pH = pK_a + \log\{[A^-] / [HA]\}$

Electrochemistry

$$\Delta G^{\circ} = -nFE^{\circ}$$

$$Moles \ of \ e^{-} = It/F$$

$$E = E^{\circ} - (RT/nF) \ln Q$$

$$= E^{\circ} - (RT/nF) \times 2.303 \log Q$$

$$E^{\circ} = (RT/nF) \ln K$$

$$= (RT/nF) \times 2.303 \log K$$

$$E = E^{\circ} - \frac{0.0592}{n} \log Q \ (at \ 25 \ ^{\circ}C)$$

Mathematics

If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $\ln x = 2.303 \log x$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудгоден Н 1.008																	2 нелим Не 4.003
3	4											5	6	7	8	9	10
LITHIUM	BERYLLIUM Be											BORON B	CARBON C	NITROGEN N	OXYGEN O	FLUORINE F	NEON Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
SODIUM	MAGNESIUM											ALUMINIUM	silicon Si	PHOSPHORUS P	SULFUR	CHLORINE	ARGON
Na 22.99	Mg 24.31											Al 26.98	SI 28.09	P 30.97	S 32.07	Cl 35.45	Ar 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.59	As 74.92	Se 78.96	Br 79.90	Kr 83.80
39.10	38	39	47.88	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	I NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55 caesium	56 barium	57-71	72 hafnium	73 tantalum	74 TUNGSTEN	75 RHENIUM	76 05MIUM	77 iridium	78 platinum	79 gold	80 mercury	81 THALLIUM	82 LEAD	83 bismuth	84 polonium	85 astatine	86 RADON
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
132.91	137.34		178.49		183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87 FRANCIUM	88 radium	89-103	104 RUTHERFORD	105 IUM DUBNIUM	106 seaborgium	107 BOHRIUM	108 hassium	109 meitnerium									
FRANCIUM	Rahom		RUTHERFORD	DOBNION Db	SEABORGIUM	Bh	HASSIEM	METNERIUM									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
	57		58	59	60	61	62	63	64	65		66	67	68	69	70	71
LANTHANID	DES LANTHA		ce	PRASEODYMIUM Pr	NEODYMIUM Nd	PROMETHIUM Pm	samarium Sm	EUROPIUM Eu	GADOLINIU GAD	m terbi			olmium Ho	ERBIUM Er	THULIUM Tm	ytterbium Yb	LUTETIUM
	138.		0.12	140.91	144.24	[144.9]	150.4	151.96	157.25				64.93	167.26	168.93	173.04	174.97
	89		00	91	92	93	94	95	96	97		98	99	100	101	102	103
ACTINIDE				PROTACTINIUM Do	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM		BERKEL				FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
	A [227		. 1 2.04	Pa [231.0]	U 238.03	Np [237.0]	Pu [239.1]	Am [243.1]	Cm [247.1	Bl] [247			Es 252.1]	Fm [257.1]	Md [256.1]	No [259.1]	Lr [260.1]
		.01 23.	2.07	[201.0]	230.03	[237.0]	[237.1]	[475.1]	L ² 7/.1	J [24/	.1			[20/.1]	[200.1]	[237.1]	[200.1]

PERIODIC TABLE OF THE ELEMENTS