CONFIDENTIAL

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY		SID	
NAME		NUMBER	
OTHER		TABLE	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 13,16 and 24 are for rough working only.

OFFICIAL USE ONLY
Multiple choice section

Short answer section

Page	Marks			Marker
	Max	Gained		
11	8			
12	6			
14	5			
15	7			
17	8			
18	4			
19	6			
20	6			
21	5			
22	5			
23	4			
Total	64			

- The most common x-ray source for laboratory diffractometers is a copper anode, which emits so-called $K_{\alpha 1}$ x-rays with wavelength $\lambda=0.154 \mathrm{~nm}$. If an anode made of 10.0 g of copper wire emits $K_{\alpha 1}$ x-ray energy at a rate of $2.00 \mathrm{~kJ} \mathrm{~s}^{-1}$, at what rate are the individual copper atoms emitting $K_{\alpha 1}$ photons (i.e. photon atom ${ }^{-1} \mathrm{~s}^{-1}$)?

ANSWER:

- Draw Lewis structures for the following molecules or ions, indicate the hybridisation of the central atom (underlined) and sketch the 3-D shape of the molecule or ion.

Species	Lewis structure	Hybridisation	Sketch of 3-D shape of species
$\underline{S O F}_{4}$			
NCO^{-}			

Draw all resonance contributors to the NCO^{-}ion.

- The final step in the industrial production of urea, $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$, is:

$$
\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}(\mathrm{~s}) \quad \Delta H^{\circ}=-90.1 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Using the following data, calculate the standard enthalpy of formation ΔH° of solid urea.

$$
\begin{array}{ll}
4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{~N}_{2}(\mathrm{~g}) & \Delta H^{\circ}=-1267.2 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta H^{\circ}=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta H^{\circ}=-483.6 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

$4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{~N}_{2}(\mathrm{~g})$	$\Delta H^{\circ}=-1267.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$	$\Delta H^{\circ}=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\Delta H^{\circ}=-483.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$

\qquad
The formation of urea in this process is only spontaneous above $821^{\circ} \mathrm{C}$. What is the value of the entropy change ΔS° (in $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$) for the reaction?

Rationalise the sign of ΔS° in terms of the physical states of the reactants and products.

- Equal volumes of carbon monoxide and hydrogen gas are introduced into a sealed 4.5 L flask at 1200 K and the following equilibrium is established.

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta H^{\circ}=-205.9 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

At equilibrium, the flask contains 0.22 mol of CH_{4} and the total pressure in the flask is 46.4 atm . Calculate the amount of $\mathrm{H}_{2}(\mathrm{~g})$ (in mol) that was initially introduced into the flask.

In a separate experiment, it is determined that the reaction is in equilibrium when the same 4.5 L flask contains 0.18 mol of $\mathrm{CH}_{4}, 0.24 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}, 0.82 \mathrm{~mol}$ of CO and 0.65 mol of H_{2} at 1200 K . Calculate the concentration equilibrium constant, K_{c}, for this temperature.

$$
K_{\mathrm{c}}=
$$

Calculate the partial pressure equilibrium constant, K_{p}, at 1200 K .

What is the standard free energy change ΔG° for the forward reaction (in $\mathrm{kJ} \mathrm{mol}^{-1}$) at 1200 K ?

What will be the effect on the equilibrium if $\mathrm{CO}(\mathrm{g})$ is injected into the flask, which maintains a constant volume.
\qquad
What will be the effect on the equilibrium if the temperature is decreased?
\square
What will be the effect on the equilibrium if the volume of the flask is decreased?
\square
What will be the effect on the equilibrium if the walls of the flask are refrigerated so that liquid water condenses out?

- Sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, is dissolved in 100 mL of water at $25^{\circ} \mathrm{C}$. The osmotic pressure is measured as 12.2 atm . What is the mass of sucrose that was originally dissolved?
\square
Calculate the vapour pressure of water above this solution, given that at $25^{\circ} \mathrm{C}$, the density of water is $0.997 \mathrm{~g} \mathrm{~mL}^{-1}$ and the vapour pressure of water is 23.8 mmHg .
\qquad
If this solution is heated at 1.00 atm , at what temperature will the water boil?
The molal boiling point elevation constant $\left(K_{\mathrm{b}}\right)$ for pure water is $0.512{ }^{\circ} \mathrm{C} \mathrm{kg} \mathrm{mol}^{-1}$.
- Calculate the molar solubility of $\mathrm{Fe}(\mathrm{OH})_{3}$ in a $\mathrm{pH}=5.0$ buffer solution. The solubility product constant of $\mathrm{Fe}(\mathrm{OH})_{3}$ is $4 \times 10^{-38} \mathrm{M}^{4}$.

Answer:

- Coordination complexes can display a number of types of isomerism. Draw a simple diagram showing a pair of geometric isomers. Label your diagram with the systematic name of each isomer.
- A voltaic cell is constructed with a $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / \mathrm{Cr}^{3+}$ (in acidic solution) half cell and a $\mathrm{Sn} / \mathrm{Sn}^{2+}$ half cell. Measurement shows that the Sn electrode is negative. Write the balanced half equations and the overall spontaneous reaction.

reduction half equation	
oxidation half equation	
overall reaction	

- How many hours will it take to produce 1.00 kg of aluminium metal from a molten Al^{3+} salt, using a current of 100 A ?

Answer:
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

- Find the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$in a 0.60 M aqueous solution of nitrous acid. The acid dissociation constant of HNO_{2} is $K_{\mathrm{a}}=7.1 \times 10^{-4} \mathrm{M}$.
\square Answer:
- An aqueous solution of a weak acid has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.54 \times 10^{-4} \mathrm{M}$. Find the pH and pOH of the solution.

- Ammonia, NH_{3}, is a Brønsted-Lowry base and a Lewis base, but not an Arrhenius base. Why?
- Give three examples of colloids in biological systems, and complete the following table. Paint is given as an example of a synthetic (non-biological) system.

Name of colloid	Discrete phase	Continuous phase
paint	synthetic polymer	water

- Alginates are high molecular weight polysaccharides extracted from seaweed. The surface active agent with the common name "propylene glycol alginate" is used as a thickener in foodstuffs. It is made by esterifying approximately 80% of the carboxyl units of the polysaccharide with 1,2-propanediol depicted, in part, below.

Explain in terms of its two components (the polysaccharide and 1,2-propanediol) why the ester functions as (a) a surfactant and (b) a thickener.

- The nitration of benzene to form nitrobenzene may be written with the following stoichiometry.

The reaction was performed in the presence of excess concentrated sulfuric acid and the following data were obtained.

Experiment number	initial [benzene] (M)	initial [nitric acid] (M)	[nitrobenzene] (M) after 100 s
1	0.010	1.0	1.2×10^{-4}
2	0.020	1.0	2.4×10^{-4}
3	0.020	0.50	1.2×10^{-4}

Determine the rate of the reaction for Experiment 1.

What is the rate equation for this reaction?
\square
What is the value of the rate constant?

$$
k=
$$

Show that the observed kinetics are consistent with the following mechanism.

$$
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons \mathrm{NO}_{2}^{+}+\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \quad \text { (fast) }
$$

- A watch contains a radioactive substance with a decay constant of 1.4×10^{-2} year ${ }^{-1}$.

After 50 years 25 mg of the radioactive material remains. Calculate the amount originally present.

Answer:

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED)

DATA SHEET

Physical constants

Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple Prefix Symbol
10^{3} kilo k
$10^{6} \quad$ mega M
$10^{9} \quad$ giga $\quad G$

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED)

Standard Reduction Potentials, \boldsymbol{E}°	
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$	+1.72
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	+1.23
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd}(\mathrm{s})$	+0.92
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}{ }^{2+}(\mathrm{aq})$	+0.15
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}(\mathrm{g})$	$0(\mathrm{by} \mathrm{definition})$
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.04
$\mathrm{~Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.24
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.74
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.76
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}(\mathrm{g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.83
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.36
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$	-2.71

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED)

Useful Formulas

Quantum Chemistry

$E=h \nu=h c / \lambda$
$\lambda=h / m u$
$4.5 k_{B} T=h c / \lambda$
$E=Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right)$

Kinetics

$k=A \mathrm{e}^{-E a / R T}$
$t_{1 / 2}=\ln 2 / k$
$\ln [\mathrm{A}]=\ln [\mathrm{A}]_{\mathrm{o}}-k t$

Gas Laws

$P V=n R T$
$\left(P+n^{2} a / V^{2}\right)(V-n b)=n R T$

Colligative Properties

$\pi=\mathrm{cR} T$
$\mathrm{p}=k \mathrm{c}$
$P_{\text {solution }}=X_{\text {solvent }} \times P^{\circ}{ }_{\text {solvent }}$
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m$
$\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m$

Thermodynamics \& Equilibrium

$$
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}
$$

$$
\Delta G=\Delta G^{\circ}+R T \ln Q
$$

$\Delta G^{\circ}=-R T \ln K$
$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$

Radioactivity

$$
A=\lambda N
$$

$$
\ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t
$$

$$
{ }^{14} \mathrm{C} \text { age }=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)
$$

Acids and Bases

$$
\begin{aligned}
& \mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00 \\
& \mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00 \\
& \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\}
\end{aligned}
$$

Electrochemistry

$\Delta G^{\circ}=-n F E^{\circ}$
Moles of $e^{-}=I t / F$

$$
\begin{aligned}
E & =E^{\circ}-(R T / n F) \ln Q \\
& =E^{\circ}-(R T / n F) \times 2.303 \log Q \\
E^{\circ} & =(R T / n F) \ln K \\
& =(R T / n F) \times 2.303 \log K \\
E & =E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Mathematics

If $a x^{2}+b x+c=0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\ln x=2.303 \log x$

PERIODIC TABLE OF THE ELEMENTS

