22/03(a)

NOVEMBER 2005

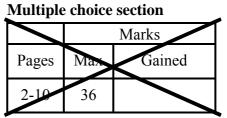
The University of Sydney

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED)

CONFIDENTIAL

TIME ALLOWED: THREE HOURS

SECOND SEMESTER EXAMINATION

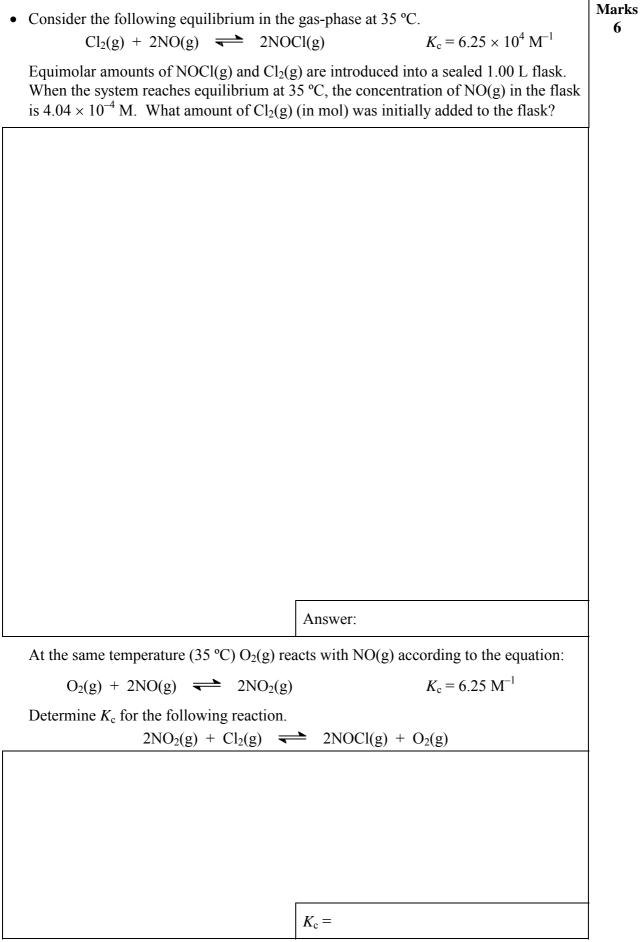

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Page 24 is for rough working only.

OFFICIAL USE ONLY


Short answer section

		Marks		
Page	Max	Gained		Marker
11	3			
12	4			
13	3			
14	6			
15	7			
16	8			
17	6			
18	2			
19	8			
20	6			
21	4			
22	5			
23	2			
Total	64			

•	Neutrons with wavelengths of 0.165 nm are produced in a nuclear reactor and used to study the positions of atoms in a crystal. At what velocity are these neutrons travelling?	Marks 3
	ANSWER:	-
	If that velocity can be measured with an uncertainty of 1%, what is the uncertainty in their positions when they reach the crystal?	
	ANSWER:	-

	nolecule or ion.	** 1 • 1• .•		
Species	Lewis structure (include resonance forms)	Hybridisation	Sketch of 3-D shape of species	
<u>C</u> O ₃ ^{2–}				
<u>S</u> F ₄				

equation:	N_2H_4 , with oxygen is described 1	by the following	Marl 3
$N_2H_4(l) + O_2(g) \rightarrow N_2$	$(g) + 2H_2O(1)$	$\Delta H^\circ = -623 \text{ kJ mol}^{-1}$	
Given that ΔH°_{f} of H ₂ O(l) is of N ₂ H ₄ (l).	-286 kJ mol^{-1} , find the standard	l enthalpy of formation	
			-
	$\Delta H^{\circ}_{f} =$		
the oxidant, whereupon 629 kJ	f $N_2H_4(1)$ can also be accomplish of energy is released at standard	l temperature and	
the oxidant, whereupon 629 kJ	f $N_2H_4(l)$ can also be accomplish	l temperature and	
the oxidant, whereupon 629 kJ	f $N_2H_4(1)$ can also be accomplish of energy is released at standard	l temperature and	
the oxidant, whereupon 629 kJ	f $N_2H_4(1)$ can also be accomplish of energy is released at standard	l temperature and	
the oxidant, whereupon 629 kJ	f $N_2H_4(1)$ can also be accomplish of energy is released at standard	l temperature and	
the oxidant, whereupon 629 kJ	f $N_2H_4(1)$ can also be accomplish of energy is released at standard	l temperature and	
the oxidant, whereupon 629 kJ	f $N_2H_4(1)$ can also be accomplish of energy is released at standard	l temperature and	
the oxidant, whereupon 629 kJ	f $N_2H_4(1)$ can also be accomplish of energy is released at standard	l temperature and	
the oxidant, whereupon 629 kJ	f $N_2H_4(1)$ can also be accomplish of energy is released at standard	l temperature and	•
the oxidant, whereupon 629 kJ	f $N_2H_4(1)$ can also be accomplish of energy is released at standard	l temperature and	
the oxidant, whereupon 629 kJ	f $N_2H_4(1)$ can also be accomplish of energy is released at standard	l temperature and	

THIS QUESTION CONTINUES ON THE NEXT PAGE

CHEM1909 2005-N-6 November 2005 22/03(a) Marks Calculate the partial pressure equilibrium constant, K_p , at 35 °C for the reaction: 7 $2NO_2(g) + Cl_2(g) \implies 2NOCl(g) + O_2(g)$ $K_{\rm p} =$ What is the standard free energy change, ΔG° , for the forward reaction (in kJ mol⁻¹) at 35 °C? $\Delta G^{\circ} =$ If 0.150 mol of O₂(g) and 3.00×10^{-4} mol of NO₂(g) are added to the 1.00 L flask, determine the free energy change, ΔG , (in kJ mol⁻¹) as the system moves to its new equilibrium point.

 $\Delta G =$

Will the amount of $NO_2(g)$ in the flask increase or decrease as the system moves to its new equilibrium position? Explain.

'coffee cup' calorimeter. The temperature	issolved in 200 mL of water at 25.00 °C in a e of the water after dissolution is 27.95 °C. n of CaCl ₂ (in kJ mol ⁻¹). The heat capacity at capacity of the CaCl ₂ .	Marks 8
	Answer:	-
What would be the vapour pressure of wa $(P^0 (H_2O) = 3.17 \text{ kPa})$	ter above this solution?	
		-
What would be the freezing point of this s depression constant (K_f) for water is 1.86		
		-
	[.	-
Which would you expect to cause the great 3.42 g of CaCl ₂ or 3.42 g of NaCl? Expla		

• The presence of iron in inorganic qualitative analysis is detected by the precipitation of the hydroxide using a buffer of pH 8. The solubility product constant of $Fe(OH)_3$ is 4×10^{-38} M ⁴ and that of $Fe(OH)_2$ is 4×10^{-15} M ³ . Is it more sensible to try and detect the presence of Fe^{2+} ions or Fe^{3+} ions? Show all working and then give a reason for your answer.	Marks 4
• Name the following complexes.	2
$[Cr(H_2O)_6](NO_3)_3$	
[CoBr ₂ (en) ₂]Cl	

 $en = ethylenediamine = NH_2CH_2CH_2NH_2$

CHEM1909	2005-N-9		November 2005	22/03(a)
• What is the v	value of the equilibrium	constan	t for the following reaction at 298 K?	Marks 2
	$2Fe^{3+}(aq) + Sn(s)$		$Sn^{2+}(aq) + 2Fe^{2+}(aq)$	
		Λ	nswer:	

Marks • Write the balanced half equations (including states) and the overall spontaneous 6 reaction for a galvanic cell consisting of $Ag^+|Ag$ and $Sn^{2+}|Sn$ half cells. half equation at anode half equation at cathode overall reaction Express the overall reaction in voltaic cell notation. What is the sign of the cathode? What voltage would need to be applied to convert this galvanic cell into an electrolytic cell? Answer: 2 • Using at least one equation, explain how colloids contribute to the hole in the ozone layer. Include mention of the type of colloid in your answer

• Triethylamine, N(CH ₂ CH ₃) ₃ , is a weak basolution of 0.100 M triethylamine was titted the titration solution after the addition of:	rated with 0.100 M HCl. Calculate the pH of	Marks 4
a) 5.00 mL HCl solution		
a) 5.00 IIIE HET Solution		
	Γ	
	pH =	
b) 20.10 mL HCl solution		
	pH =	
	pm -	2
• Tris(hydroxymethyl)aminomethane, comm $K_b = 1.19 \times 10^{-6}$ M. It is often used in but water according to the following equation (HOCH ₂) ₃ CNH ₂ (aq) + H ₂ O(1)	ffers for biochemical research. It reacts with	2
At what pH does TRIS show its maximum		
I		
	pH =	
What is the TRIS/TRIS- H^+ ratio in a buff	er of pH 7.40?	
	Answer:	

Marks • Technetium-99 is used in imaging internal organs in the body, and is often used to 2 assess heart damage. The rate constant for decay of ${}^{99m}_{43}$ Tc is 0.116 hour⁻¹. What is the half life of this nuclide? Answer: What fraction is left after 30 minutes? Answer: 2 • Boron-13 is a synthetic (not naturally occurring) isotope of boron. Using the N/Zratio, predict a possible mode of decay for the isotope boron-13. Give a reason for your choice and write the nuclear equation for this decay.

• Consider the following reaction.

 $2\text{ClO}_2(aq) + 2\text{OH}^-(aq) \rightarrow \text{ClO}_3^-(aq) + \text{ClO}_2^-(aq) + \text{H}_2\text{O}(l)$

A series of experiments gave the rate data shown in the table below.

Experiment number	initial [ClO ₂] (M)	initial [OH ⁻] (M)	initial rate of decrease of [ClO ₂] (M s ^{-1})
1	0.0500	0.100	5.75×10^{-2}
2	0.100	0.100	$2.30 imes 10^{-1}$
3	0.100	0.050	1.15×10^{-1}

Determine the rate expression for the above reaction.

Rate =

What is the value of the rate constant? Include units in your answer.

k =

What is the relationship between the rate of decrease of $[ClO_2]$ and the rate of increase of $[ClO_3^-]$?

It has been proposed that the reaction $Cl_2(g) + CHC$ proceeds by the following mechanism:	$l_3(g) \rightarrow HCl(g) + CCl_4(g)$	Mar 2
$Cl_2(g) \xrightarrow{k_1} 2Cl(g)$	(fast equilibrium)	
$Cl(g) + CHCl_3(g) \xrightarrow{k_2} HCl(g) + CCl_3(g)$	(slow)	
$CCl_3(g) + Cl(g) \xrightarrow{k_3} CCl_4(g)$	(fast)	
Derive the rate expression for this mechanism.		
nswer:]

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED)

DATA SHEET

Physical constants Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_p = 1.6726 \times 10^{-27} \text{ kg}$ Mass of neutron, $m_p = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Decimal fractions		Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	Μ
10 ⁻⁹	nano	n	10 ⁹	giga	G
10^{-12}	pico	р			

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED)

Standard Reduction Potentials, E^{o}
--

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44
$Cr^{3+}(aq) + 3e^- \rightarrow Cr(s)$	-0.74
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^- \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$	-3.04

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED)

Useful formulas							
Quantum Chemistry	Radioactivity						
$E = h\nu = hc/\lambda$	$t_{1/2} = \ln 2/\lambda$						
$\lambda = h/mv$	$A = \lambda N$						
$4.5k_{\rm B}T = hc/\lambda$	$\ln(N_0/N_t) = \lambda t$						
$E = Z^2 E_{\rm R}(1/n^2)$	14 C age = 8033 ln(A_0/A_t)						
$\Delta x \cdot \Delta(mv) \ge h/4\pi$							
Acids and Bases	Gas Laws						
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT						
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P+n^2a/V^2)(V-nb) = nRT$						
$pH = pK_a + \log\{[A^-] / [HA]\}$							
Colligative properties	Kinetics						
$\pi = cRT$	$t_{1/2} = \ln 2/k$						
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-E_{a}/RT}$						
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{o} - kt$						
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$						
$\Delta T_{\rm b} = K_{\rm b} m$	$\prod_{i=1}^{n} k_{1} = R \left(T_{1} = T_{2} \right)^{\prime}$						
Electrochemistry	Thermodynamics & Equilibrium						
$\Delta G^{\circ} = -nFE^{\circ}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$						
Moles of $e^- = It/F$	$\Delta G = \Delta G^{\circ} + RT \ln Q$						
$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$	$\Delta G^{\circ} = -RT \ln K$						
$= E^{\circ} - (RT/nF) \times \ln Q$	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$						
$E^{\circ} = (RT/nF) \times 2.303 \log K$							
$= (RT/nF) \times \ln K$							
$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$							
Polymers	Mathematics						
$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$						
	$\ln x = 2.303 \log x$						

Useful formulas

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1 ydrogen H 1.008																	2 нелим Не 4.003
	3	4											5	6	7	8	9	10
	LITHIUM	BERYLLIUM Be											BORON B	CARBON C	NITROGEN N	OXYGEN O	FLUORINE F	NEON Ne
	5 .941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
	11	12											13	14	15	16	17	18
s	SODIUM	MAGNESIUM											ALUMINIUM	SILICON	PHOSPHORUS	SULFUR	CHLORINE	ARGON
	Na	Mg												Si	P	S		Ar
	22.99 19	24.31 20	21	22	23	24	25	26	27	28	29	30	26.98 31	28.09 32	<u>30.97</u> <u>33</u>	32.07 34	35.45 35	39.95 36
PO	OTASSIUM	ZU calcium	Z I SCANDIUM	TITANIU	M VANADIUM	∠4 chromium	∠ے manganese	∠0 IRON	COBALT	NICKEL	COPPER	50 zinc	J I GALLIUM	Э <i>L</i> germanium	33 ARSENIC	SELENIUM	33 BROMINE	KRYPTON
	K	Ca	Sc	Ti		Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47.88		52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
	37 UBIDIUM	38 strontium	39 yttrium	40 ZIRCONIU		42 molybdenum	43 тесниетии	44 RUTHENIUM	45 RHODIUM	46 palladium	47 SILVER	48 cadmium	49 INDIUM	50 TIN	51 ANTIMONY	52 TELLURIUM	53 iodine	54 XENON
	Rb	Sr	Y	Zr		Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
	35.47	87.62	88.91	91.22		95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
	55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	CAESIUM CS	barium Ba		HAFNIUM HAFNIUM		TUNGSTEN W	RHENIUM Re	OSMIUM OS	iridium Ir	PLATINUM Pt			THALLIUM	LEAD Pb	візмитн Ві	POLONIUM PO	ASTATINE At	radon Rn
	CS 32.91	Da 137.34		178.4		183.85	186.2	190.2	192.22	195.09	Au 196.97	Hg 200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
	87	88	89-103			106	107	108	109	170.07	170.77	200.07	201.07	207.2	200.90	[=10.0]	[=10.0]	[:•]
FF	RANCIUM	RADIUM	07 105	RUTHERFOR	DIUM DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM									
	Fr			Rf		Sg	Bh	Hs	Mt									
2	223.0]	[226.0]		[261]] [262]	[266]	[262]	[265]	[266]									
		57	7 6	0	50	(0	(1	()	()	()		-		(7	(0	(0	70	71
LAN	THANIDE	ES LANTHA		58 RIUM	59 praseodymium	60 NEODYMIUM	61 promethium	62 samarium	63 Europium	64 gadoliniu	M TERBI		56 PROSIUM H	67	68 Erbium	69 THULIUM	70 ytterbium	71
1.4 11 1	ACTINIDES			Ce	Pr	Nd	Pm	Sm	Eu	Gd	T		•	Но	Er	Tm	Yb	Lu
				0.12	140.91	144.24	[144.9]	150.4	151.96	157.25				64.93	167.26	168.93	173.04	174.97
)) DRIUM	91 protactinium	92 uranium	93 NEPTUNIUM	94 plutonium	95 Americium	96 curium	97 BERKEL		98 Fornium ei	99 ISTEINIUM	100 Fermium	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM
AC				h	PROTACINIUM	U	Np	PLUTONIUM	Americion	Cm	BERKEL		Cf	Es	Fm	Mendelevium	NOBELIUM	LawRencium
				2.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1				252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS