22/49(a)

NOVEMBER 2006

The University of Sydney

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B (ADVANCED)

CONFIDENTIAL

TIME ALLOWED: THREE HOURS

SECOND SEMESTER EXAMINATION

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Page 17 & 24 are for rough working only.

OFFICIAL USE ONLY

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
11	6			
12	5			
13	5			
14	3			
15	4			
16	6			
18	6			
19	6			
20	5			
21	7			
22	7			
23	5			
Total	65			

•	High-purity benzoic acid, C_6H_5COOH , (A calibrate a bomb calorimeter that has a 1.4 C_6H_5COOH is placed in the bomb calorin and the remaining 250 mL cavity is filled C_6H_5COOH is ignited and completely but and the bomb calorimeter to rise from 27. equation corresponding to the standard en C_6H_5COOH .	$\Delta H^{\circ}_{\text{comb}} = -3227 \text{ kJ mol}^{-1}$) is used to 000 L capacity. A 1.000 g sample of neter, along with 750 mL of pure H ₂ O(l), with pure O ₂ (g) at 10.00 atm. The rned, causing the temperature of the water .20 °C to 33.16 °C. Write the chemical nthalpy of combustion ($\Delta H^{\circ}_{\text{comb}}$) of	Marks 6
	Given that $H_2O(l)$ has a heat capacity of 4 ¹ , calculate the heat capacity of the bomb the heat capacity of the gases and of C_6H_5	4.184 J K ^{-1} g ^{-1} and a density of 0.997 g mL ^{-1} calorimeter itself (in units of J K ^{-1}). Ignore ⁵ COOH.	
		Answer:	
	If 30.0% of the CO ₂ produced dissolves in (in atm) inside the 250 mL cavity of the b insoluble in water and ignore the vapour p	n the water, calculate the final total pressure bomb calorimeter. Assume oxygen is pressure of water.	
		Answer:	

•	The specific heat capacity of water is 4.18 J $g^{-1} K^{-1}$ and the specific heat capacity of copper is 0.39 J $g^{-1} K^{-1}$. If the same amount of energy were applied to a 1.0 mol sample of each substance, both initially at 25 °C, which substance would get hotter? Show all working.	Marks 2
	<u> </u>	
	Answer:	
•	Explain why the acidity of hydrogen halides <i>increases</i> with increasing halogen size (<i>i.e.</i> , K_a (HCl) $< K_a$ (HBr) $< K_a$ (HI)), while the acidity of hypohalous acids <i>decreases</i> with increasing halogen size (<i>i.e.</i> , K_a (HOCl) $> K_a$ (HOBr) $> K_a$ (HOI)).	3

CHEM1909	2006-N-4	November 2006	22/49(a)
• The K_a of benzoic Calculate the pH of	acid is 6.3×10^{-5} M at	t 25 °C. solution of sodium benzoate (C4H5COONa)	Marks 5
			,.
		Answer:	_
A buffer solution sodium benzoate t the buffer solution	is prepared by adding 3 to 225 mL of 0.0200 M n.	375 mL of this 0.0100 M aqueous solution o aqueous benzoic acid. Calculate the pH of	f
		A	_
		AllSWCI.	

• "Water gas" is a mixture of combustible gases produced from steam and coal according to the following reaction:	Marks 3
$C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$ $\Delta H^\circ = 131 \text{ kJ mol}^{-1}$	
The equation for the complete combustion of 1 mol of water gas (<i>i.e.</i> 0.5 mol CO(g) and 0.5 mol H ₂ (g)) can be written as:	
$\frac{1}{2}CO(g) + \frac{1}{2}H_2(g) + \frac{1}{2}O_2(g) \rightarrow \frac{1}{2}CO_2(g) + \frac{1}{2}H_2O(g)$	
Calculate the standard enthalpy of combustion of water gas, given the following thermochemical data.	
$\Delta H^{\circ}_{vap} (H_2 O) = 44 \text{ kJ mol}^{-1}$	
$\Delta H^{\circ}_{f} (H_{2}O(1)) = -286 \text{ kJ mol}^{-1}$	
$\Delta H^{\circ}_{f} (CO_{2}(g)) = -393 \text{ kJ mol}^{-1}$	_
	-
Answer:	

THIS QUESTION CONTINUES ON THE NEXT PAGE. THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

The CO(g) in water gas can be reacted further with $H_2O(g)$ in the so-called "water- gas shift" reaction:	Marks 4
$CO(g) + H_2O(g) \iff CO_2(g) + H_2(g)$	
At 900 K, $K_c = 1.56$ for this reaction. A sample of water gas flowing over coal at 900 K contains a 1:1 mole ratio of CO(g) and H ₂ (g), as well as 0.250 mol L ⁻¹ H ₂ O(g). This sample is placed in a sealed container at 900 K and allowed to come to equilibrium, at which point it contains 0.070 mol L ⁻¹ CO ₂ (g). What was the initial concentration of CO(g) and H ₂ (g) in the sample?	
$[CO] = [H_2] =$	
If the walls of the container are chilled to below 100 °C, what will be the effect on the concentration of $CO_2(g)$?	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

•	The isomerisation of glucose-6-phosphate key step in the metabolism of glucose for e	(G6P) to fructose-6-phosphate (F6P) is a energy. At 298 K,	Marks 6
	G6P ← F6P	$\Delta G^{\circ} = 1.67 \text{ kJ mol}^{-1}$	
	Calculate the equilibrium constant for this	process at 298 K.	
		Answer:	
	What is the free energy change (in kJ mol ⁻ and 2.00 mol of G6P reaching equilibrium	⁻¹) involved in a mixture of 3.00 mol of F6P at 298 K?	
	r		
		Answer:	
	Sketch a graph of G_{sys} versus "extent of revaries as G6P is converted to F6P. Indicat to 3.00 mol of F6P and 2.00 mol of G6P.	action", with a curve showing how G_{sys} te the position on this curve corresponding	

•	Assume that NaCl is the only significant s seawater at 25 °C and 1 atm has a mass of At what temperature would this seawater is constant of water is 1.86 °C kg mol ⁻¹ .	solute in seawater. A 1.000 L sample of 21.0275 kg and contains 33.0 g of NaCl. freeze? The freezing point depression	Marks 6
		Answer:	
	The vapour pressure above pure H_2O is 23 the vapour pressure above this seawater u	3.76 mmHg at 25 °C and 1 atm. Calculate nder the same conditions.	
		Answer:	
	The desalination of seawater by reverse of alleviating water shortages in Sydney. We applied to this seawater in order to force in yielding pure H ₂ O?	smosis has been suggested as a way of hat pressure (in Pa) would need to be t through a semi-permeable membrane,	
		Answer:	
		·	

	909	2006-N-9	November 2006	22/49(a)
• The m Calcu	nolar solubilit late the value	y of lead(II) fluoride, of K_{sp} for this compo	PbF ₂ , is found to be 2.6×10^{-3} M at 25 °C. ound at this temperature.	Marks 2
			$K_{\rm sp} =$	
• Draw (en =	all stereoison ethylenediam	ners of the complex ic ine = NH ₂ CH ₂ CH ₂ NH	on of $[Co(en)_3]Br_3$. H ₂)	2
• Nam	e the followin	ng complexes.		2
[Co(]	H ₂ O) ₄ Br ₂]Cl			
-	K[Au(CN) ₂]			

• Write the chemical equation for the forma	ation of the complex ion $[Cd(NH_3)_4]^{2+}$.	Marks 2
Write the associated stability constant exp	pression (K_{stab}).	_
		-
• The physiological properties of chromium half reaction in which Cr(VI) is reduced to	n depend on its oxidation state. Consider the o Cr(III).	3
$\operatorname{CrO_4^{2-}}(\operatorname{aq}) + 4\operatorname{H_2O}(1) + 3e^- \rightarrow \operatorname{Cr}(6)$	OH) ₃ (s) + 5OH ⁻ (aq) $E^{\circ} = -0.13 \text{ V}$	
Calculate the potential for this half reaction $[CrO_4^{2-}(aq)] = 1.0 \times 10^{-6} \text{ M}.$	on at 25 °C, where $pH = 7.40$ and	
1	Answer:	-

Consider the following reaction at 298 K.	Mar 5
$Ni^{2+}(aq) + Zn(s)$ \Longrightarrow Nice	$(s) + Zn^{2+}(aq)$
Calculate ΔG° for the cell. (Relevant electrode pote page.)	entials can be found on the data
Answer	:
What is the value of the equilibrium constant for th	e reaction at 298 K?
Answer	
Express the overall reaction in voltaic cell notation	
•	
Using a current of 2.00 A, how long (in minutes) w silver from 0.250 L of a 1.14×10^{-2} M Ag ⁺ (aq) sol	vill it take to plate out all of the ution?

CHEM1909

• If a medical procedure calls for 2.0 mg of ⁴⁸ V, what mass of isotope would be required to be able to use it exactly one week later? The half life of ⁴⁸ V is 1.61 days. Marks 2 • If a medical procedure calls for 2.0 mg of ⁴⁸ V, what mass of isotope would be required to be able to use it exactly one week later? The half life of ⁴⁸ V is 1.61 days. 3 • Describe how hydrophilic and hydrophobic colloids are stabilised in water. 3 • Calculate the standard free-energy change for the following reaction at 298 K. 2Au(s) + 3Mg ²⁺ (1.0 M) → 2Au ³⁺ (1.0 M) + 3Mg(s) 2 • Calculate the standard free-energy change for the following reaction at 298 K. 2Au(s) + 3Mg ²⁺ (1.0 M) → 2Au ³⁺ (1.0 M) + 3Mg(s) 2	C	HEM1909	2006-N-12	November 2006	22/49(a)			
Answer: 3 • Describe how hydrophilic and hydrophobic colloids are stabilised in water. 3 • Calculate the standard free-energy change for the following reaction at 298 K. 2 2Au(s) + 3Mg ²⁺ (1.0 M) → 2Au ³⁺ (1.0 M) + 3Mg(s) 2	•	If a medical procedure ca required to be able to use	lls for 2.0 mg of it exactly one w	f ⁴⁸ V, what mass of isotope would be yeek later? The half life of ⁴⁸ V is 1.61 days	. Marks 2			
Answer: 3 • Describe how hydrophilic and hydrophobic colloids are stabilised in water. 3 • Calculate the standard free-energy change for the following reaction at 298 K. 2 2Au(s) + 3Mg ²⁺ (1.0 M) → 2Au ³⁺ (1.0 M) + 3Mg(s) 2								
Answer: 3 • Describe how hydrophilic and hydrophobic colloids are stabilised in water. 3 • Calculate the standard free-energy change for the following reaction at 298 K. 2Au(s) + 3Mg ²⁺ (1.0 M) → 2Au ³⁺ (1.0 M) + 3Mg(s) 2 Answer: Answer:								
 Describe how hydrophilic and hydrophobic colloids are stabilised in water. Calculate the standard free-energy change for the following reaction at 298 K. 2Au(s) + 3Mg²⁺(1.0 M) → 2Au³⁺(1.0 M) + 3Mg(s) 				Answer:				
• Calculate the standard free-energy change for the following reaction at 298 K. $2Au(s) + 3Mg^{2+}(1.0 \text{ M}) \rightarrow 2Au^{3+}(1.0 \text{ M}) + 3Mg(s)$ Answer:	٠	Describe how hydrophil	ic and hydropho	bic colloids are stabilised in water.	3			
• Calculate the standard free-energy change for the following reaction at 298 K. $2Au(s) + 3Mg^{2+}(1.0 \text{ M}) \rightarrow 2Au^{3+}(1.0 \text{ M}) + 3Mg(s)$ Answer:								
Answer:	• Calculate the standard free-energy change for the following reaction at 298 K. $2Au(s) + 3Mg^{2+}(1.0 \text{ M}) \rightarrow 2Au^{3+}(1.0 \text{ M}) + 3Mg(s)$							
Answer:								
				Answer:				

5

Marks • The major pollutants NO(g), CO(g), NO₂(g) and CO₂(g), which are emitted by cars, can react according to the following equation. $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$ The following rate data were collected at 225 °C. Initial rate (d[NO₂]/dt, M s⁻¹) Experiment $[NO_2]_0(M)$ $[CO]_0(M)$ 1.44×10^{-5} 1 0.263 0.826 1.44×10^{-5} 2 0.413 0.263 5.76×10^{-5} 3 0.526 0.413 Determine the rate law for the reaction. Calculate the value of the rate constant at 225 °C. Answer: Calculate the rate of appearance of CO_2 when $[NO_2] = [CO] = 0.500$ M. Answer: Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B (ADVANCED)

DATA SHEET

Physical constants Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_p = 1.6726 \times 10^{-27} \text{ kg}$ Mass of neutron, $m_p = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Deci	mal fract	ions	Decin	Decimal multiples						
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol					
10^{-3}	milli	m	10^{3}	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	Μ					
10^{-9}	nano	n	10 ⁹	giga	G					
10^{-12}	pico	р								

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B (ADVANCED)

Standard Reduction	Potentials,	E°
---------------------------	-------------	----

Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) ~+~ 4H^+(aq) ~+~ e^- \rightarrow ~Mn^{3+} ~+~ 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^- \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$\operatorname{Co}^{2^+}(\operatorname{aq}) + 2e^- \rightarrow \operatorname{Co}(s)$	-0.28
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^- \rightarrow Al(s)$	-1.68
$1 (2^{+}(1) + 2^{-}) = 1 (2^{-})$	
$Mg^2(aq) + 2e \rightarrow Mg(s)$	-2.36
$Mg^{-}(aq) + 2e \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-2.36 -2.71
$Mg^{-}(aq) + 2e^{-} \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$ $Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.36 -2.71 -2.87

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B (ADVANCED)

Quantum Chemistry	Electrochemistry							
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$							
$\lambda = h/mv$	Moles of $e^- = It/F$							
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$							
$E = Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$							
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$							
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$							
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$							
Acids and Bases	Gas Laws							
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT							
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$							
$pH = pK_a + \log\{[A^-] / [HA]\}$								
Colligative properties	Kinetics							
$\pi = cRT$	$t_{\frac{1}{2}} = \ln 2/k$							
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-E_a/RT}$							
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$							
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k_2} = \frac{E_a}{k_a} \left(\frac{1}{k_a} - \frac{1}{k_a} \right)$							
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 = R (T_1 = T_2)$							
Radioactivity	Thermodynamics & Equilibrium							
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$							
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$							
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$							
14 C age = 8033 ln(A_0/A_t)	$K_{\rm p} = K_{\rm c} \ (RT)^{\Delta n}$							
Polymers	Mathematics							
$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$							
	$\ln x = 2.303 \log x$							

Useful formulas

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Ī																		2
	HIDROGEN																	Не
	1.008																	4.003
Ī	3	4											5	6	7	8	9	10
		BERYLLIUM											BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON
	LI 6.941	Be											B	L 12.01	IN 14.01	U	F 19.00	INE 20.18
ŀ	11	9.012 1 2	-										10.81	12.01	14.01	16.00	19.00	18
	1 1 SODIUM	I∠ MAGNESIUM											ALUMINIUM	14 SILICON	1 J PHOSPHORUS	I U SULFUR	1 / CHLORINE	1 O ARGON
	Na	Mg											Al	Si	P	S	Cl	Ar
Ļ	22.99	24.31		1		Т	г	1	ſ				26.98	28.09	30.97	32.07	35.45	39.95
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Scaulter	Ti	VANADIOM V	Cr	MANGANESE	Fe	Со	Ni	Сп	Zn	Ga	Germanum	ASENC	Se	Br	Kr
	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
Ī	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIU 7 m	M NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM		SILVER			TIN Cm	ANTIMONY	TELLURIUM	IODINE	XENON Vo
	KD 85.47	Sr 87.62	X 88.01	01 2	1ND 02.01	IVIO 05.04	IC	KU 101.07	KN 102.01	P a 106.4	Ag	Uu	II 114.82	511	50	127.60	I 126.00	Ae
ŀ	55	56	57 71	72	73	7/	75	76	77	78	70	80	<u>81</u>	82	83	127.00 Q /	120.90 85	86
	CAESIUM	BARIUM	57-71	1 Z HAFNIUN	1 TANTALUM	/ 4 TUNGSTEN	7 J RHENIUM	7 U OSMIUM	/ / IRIDIUM	/ O PLATINUM	GOLD	MERCURY	O I THALLIUM		BISMUTH	O4 POLONIUM	ASTATINE	RADON
	Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
ŀ	132.91	137.34		178.4	9 180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
	87 FRANCIUM	88 RADIUM	89-103	104	105	106 SEABORGHIM	10 [′] /	108 HASSIUM	109 MEITNERIUM									
	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt									
	[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
		57	7 5	58	59	60	61	62	63	64	65	5	66	67	68	69	70	71
LANTHANIDES		ES LANTHA	NUM CE	RIUM	PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM		M TERBI	UM DYSI	PROSIUM I		ERBIUM	THULIUM	YTTERBIUM	LUTETIUM
		Li 138	a (91 14) e	Pr 140 91	1 NU 144-24	F III [144 9]	5111 150.4	Eu 151.96	157.24	5 158) I 93 16	Jy 12 50 1	HO 64 93	E F 167.26	168.93	173.04	174 97
ACTINIDES		80) (20	91	92	93	94	95	96	97	7	98	99	100	101	102	103
		S ACTIN		ORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKEL	LIUM CALI	FORNIUM EI	NSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
		A	с Т	ĥ	Pa	U	Np	Pu	Am	Cm	Bl	ζ (Cf	Es	Fm	Md	No	Lr
		[227	.0] 232	2.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1] [247	.1] [2:	52.1] [252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS