CONFIDENTIAL

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

| FAMILY |
| :---: | :--- | :---: | :--- |
| NAME |\quad| | |
| :---: | :---: |
| OTHER | |
| NADD | |
| NAMES | |
| TABLE | |

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Page 17 \& 24 are for rough working only.

OFFICIAL USE ONLY

Short answer section

Page	Marks			Marker
	Max	Gained		
11	6			
12	5			
13	5			
14	3			
15	4			
16	6			
18	6			
19	6			
20	5			
21	7			
22	7			
23	5			
Total	65			

- High-purity benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH},\left(\Delta H^{\circ}{ }_{\text {comb }}=-3227 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ is used to calibrate a bomb calorimeter that has a 1.000 L capacity. A 1.000 g sample of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ is placed in the bomb calorimeter, along with 750 mL of pure $\mathrm{H}_{2} \mathrm{O}(1)$, and the remaining 250 mL cavity is filled with pure $\mathrm{O}_{2}(\mathrm{~g})$ at 10.00 atm . The $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ is ignited and completely burned, causing the temperature of the water and the bomb calorimeter to rise from $27.20^{\circ} \mathrm{C}$ to $33.16^{\circ} \mathrm{C}$. Write the chemical equation corresponding to the standard enthalpy of combustion ($\Delta H^{\circ}{ }_{\text {comb }}$) of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$.

Given that $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ has a heat capacity of $4.184 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$ and a density of $0.997 \mathrm{~g} \mathrm{~mL}^{-}$ ${ }^{1}$, calculate the heat capacity of the bomb calorimeter itself (in units of $\mathrm{J} \mathrm{K}^{-1}$). Ignore the heat capacity of the gases and of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$.

Answer:

If 30.0% of the CO_{2} produced dissolves in the water, calculate the final total pressure (in atm) inside the 250 mL cavity of the bomb calorimeter. Assume oxygen is insoluble in water and ignore the vapour pressure of water.

- The specific heat capacity of water is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$ and the specific heat capacity of copper is $0.39 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$. If the same amount of energy were applied to a 1.0 mol sample of each substance, both initially at $25^{\circ} \mathrm{C}$, which substance would get hotter? Show all working.

Answer:

- Explain why the acidity of hydrogen halides increases with increasing halogen size (i.e., $K_{\mathrm{a}}(\mathrm{HCl})<K_{\mathrm{a}}(\mathrm{HBr})<K_{\mathrm{a}}(\mathrm{HI})$), while the acidity of hypohalous acids decreases with increasing halogen size $\left(\right.$ i.e., $K_{\mathrm{a}}(\mathrm{HOCl})>K_{\mathrm{a}}(\mathrm{HOBr})>K_{\mathrm{a}}(\mathrm{HOI})$).
- The K_{a} of benzoic acid is $6.3 \times 10^{-5} \mathrm{M}$ at $25^{\circ} \mathrm{C}$.

Calculate the pH of a 0.0100 M aqueous solution of sodium benzoate $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}\right)$.

Answer:

A buffer solution is prepared by adding 375 mL of this 0.0100 M aqueous solution of sodium benzoate to 225 mL of 0.0200 M aqueous benzoic acid. Calculate the pH of the buffer solution.

Answer:

- "Water gas" is a mixture of combustible gases produced from steam and coal according to the following reaction:

$$
\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \quad \Delta H^{\circ}=131 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

The equation for the complete combustion of 1 mol of water gas (i.e. $0.5 \mathrm{~mol} \mathrm{CO}(\mathrm{g})$ and $\left.0.5 \mathrm{~mol} \mathrm{H}_{2}(\mathrm{~g})\right)$ can be written as:

$$
1 / 2 \mathrm{CO}(\mathrm{~g})+1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 1 / 2 \mathrm{CO}_{2}(\mathrm{~g})+1 / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Calculate the standard enthalpy of combustion of water gas, given the following thermochemical data.

$$
\begin{aligned}
& \Delta H^{\circ}{ }_{\text {vap }}\left(\mathrm{H}_{2} \mathrm{O}\right)=44 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)=-286 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta H^{\circ}{ }_{\mathrm{f}}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)=-393 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

The $\mathrm{CO}(\mathrm{g})$ in water gas can be reacted further with $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ in the so-called "watergas shift" reaction:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

At $900 \mathrm{~K}, K_{\mathrm{c}}=1.56$ for this reaction. A sample of water gas flowing over coal at 900 K contains a $1: 1$ mole ratio of $\mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2}(\mathrm{~g})$, as well as $0.250 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. This sample is placed in a sealed container at 900 K and allowed to come to equilibrium, at which point it contains $0.070 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CO}_{2}(\mathrm{~g})$. What was the initial concentration of $\mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ in the sample?

If the walls of the container are chilled to below $100^{\circ} \mathrm{C}$, what will be the effect on the concentration of $\mathrm{CO}_{2}(\mathrm{~g})$?

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- The isomerisation of glucose-6-phosphate (G6P) to fructose-6-phosphate (F6P) is a key step in the metabolism of glucose for energy. At 298 K,

$$
\mathrm{G} 6 \mathrm{P} \rightleftharpoons \mathrm{~F} 6 \mathrm{P} \quad \Delta G^{\circ}=1.67 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Calculate the equilibrium constant for this process at 298 K .
\square
What is the free energy change (in $\mathrm{kJ} \mathrm{mol}^{-1}$) involved in a mixture of 3.00 mol of F6P and 2.00 mol of G6P reaching equilibrium at 298 K ?

Sketch a graph of $G_{\text {sys }} v e r s u s$ "extent of reaction", with a curve showing how $G_{\text {sys }}$ varies as G6P is converted to F6P. Indicate the position on this curve corresponding to 3.00 mol of F6P and 2.00 mol of G6P.

- Assume that NaCl is the only significant solute in seawater. A 1.000 L sample of seawater at $25^{\circ} \mathrm{C}$ and 1 atm has a mass of 1.0275 kg and contains 33.0 g of NaCl . At what temperature would this seawater freeze? The freezing point depression constant of water is $1.86^{\circ} \mathrm{C} \mathrm{kg} \mathrm{mol}^{-1}$.

Answer:
The vapour pressure above pure $\mathrm{H}_{2} \mathrm{O}$ is 23.76 mmHg at $25^{\circ} \mathrm{C}$ and 1 atm . Calculate the vapour pressure above this seawater under the same conditions.

Answer:

The desalination of seawater by reverse osmosis has been suggested as a way of alleviating water shortages in Sydney. What pressure (in Pa) would need to be applied to this seawater in order to force it through a semi-permeable membrane, yielding pure $\mathrm{H}_{2} \mathrm{O}$?

Answer:

- The molar solubility of lead(II) fluoride, PbF_{2}, is found to be $2.6 \times 10^{-3} \mathrm{M}$ at $25^{\circ} \mathrm{C}$.

Marks Calculate the value of K_{sp} for this compound at this temperature.

$$
K_{\mathrm{sp}}=
$$

- Draw all stereoisomers of the complex ion of $\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Br}_{3}$.
$\left(\right.$ en $=$ ethylenediamine $\left.=\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$
\square
- Name the following complexes.
- Write the chemical equation for the formation of the complex ion $\left[\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$.
\square
Write the associated stability constant expression ($K_{\text {stab }}$).
- The physiological properties of chromium depend on its oxidation state. Consider the half reaction in which $\mathrm{Cr}(\mathrm{VI})$ is reduced to $\mathrm{Cr}(\mathrm{III})$.

$$
\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+5 \mathrm{OH}^{-}(\mathrm{aq}) \quad E^{\mathrm{o}}=-0.13 \mathrm{~V}
$$

Calculate the potential for this half reaction at $25^{\circ} \mathrm{C}$, where $\mathrm{pH}=7.40$ and $\left[\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})\right]=1.0 \times 10^{-6} \mathrm{M}$.

- Consider the following reaction at 298 K .

$$
\mathrm{Ni}^{2+}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s}) \quad \rightleftharpoons \mathrm{Ni}(\mathrm{~s})+\mathrm{Zn}^{2+}(\mathrm{aq})
$$

Calculate ΔG^{0} for the cell. (Relevant electrode potentials can be found on the data page.)

Answer:
What is the value of the equilibrium constant for the reaction at 298 K ?
\square
Express the overall reaction in voltaic cell notation.

- Using a current of 2.00 A , how long (in minutes) will it take to plate out all of the silver from 0.250 L of a $1.14 \times 10^{-2} \mathrm{M} \mathrm{Ag}^{+}(\mathrm{aq})$ solution?
- If a medical procedure calls for 2.0 mg of ${ }^{48} \mathrm{~V}$, what mass of isotope would be required to be able to use it exactly one week later? The half life of ${ }^{48} \mathrm{~V}$ is 1.61 days.

- Describe how hydrophilic and hydrophobic colloids are stabilised in water.
\square
- Calculate the standard free-energy change for the following reaction at 298 K .

$$
2 \mathrm{Au}(\mathrm{~s})+3 \mathrm{Mg}^{2+}(1.0 \mathrm{M}) \rightarrow 2 \mathrm{Au}^{3+}(1.0 \mathrm{M})+3 \mathrm{Mg}(\mathrm{~s})
$$

Answer:

- The major pollutants $\mathrm{NO}(\mathrm{g}), \mathrm{CO}(\mathrm{g}), \mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$, which are emitted by cars, can react according to the following equation.

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

The following rate data were collected at $225^{\circ} \mathrm{C}$.

Experiment	$\left[\mathrm{NO}_{2}\right]_{0}(\mathrm{M})$	$[\mathrm{CO}]_{0}(\mathrm{M})$	Initial rate $\left(\mathrm{d}\left[\mathrm{NO}_{2}\right] / \mathrm{dt}, \mathrm{M} \mathrm{s}^{-1}\right)$
1	0.263	0.826	1.44×10^{-5}
2	0.263	0.413	1.44×10^{-5}
3	0.526	0.413	5.76×10^{-5}

Determine the rate law for the reaction.
\square
Calculate the value of the rate constant at $225^{\circ} \mathrm{C}$.
\square
Calculate the rate of appearance of CO_{2} when $\left[\mathrm{NO}_{2}\right]=[\mathrm{CO}]=0.500 \mathrm{M}$.
\square
Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B (ADVANCED)
 DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{e}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{\mathrm{p}}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$

Decimal fractions
Fraction Prefix Symbol

10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples
Multiple Prefix Symbol 10^{3} kilo k 10^{6} mega M $10^{9} \quad$ giga $\quad G$

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B (ADVANCED)

Standard Reduction Potentials, \boldsymbol{E}°

Reaction
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq}) \quad+1.82$
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq}) \quad+1.72$
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s}) \quad+1.50$
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq}) \quad+1.36$
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad+1.23$
$\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq}) \quad+1.10$
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O} \quad+0.96$
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd}(\mathrm{s}) \quad+0.92$
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s}) \quad+0.80$
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq}) \quad+0.77$
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \quad+0.53$
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \quad+0.34$
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq}) \quad+0.15$
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g}) \quad 0$ (by definition)
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s}) \quad-0.04$
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s}) \quad-0.13$
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s}) \quad-0.14$
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s}) \quad-0.24$
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{s}) \quad-0.28$
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s}) \quad-0.44$
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s}) \quad-0.74$
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s}) \quad-0.76$
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \quad-0.83$
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s}) \quad-0.89$
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s}) \quad-1.68$
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s}) \quad-2.36$
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s}) \quad-2.71$
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s}) \quad-2.87$
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s}) \quad-3.04$

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B (ADVANCED)

Useful formulas

Quantum Chemistry	Electrochemistry
$E=h \nu=h c / \lambda$	$\Delta G^{\circ}=-n F E^{\circ}$
$\lambda=h / m v$	Moles of $e^{-}=I t / F$
$4.5 k_{\mathrm{B}} T=h c / \lambda$	$E=E^{\circ}-(R T / n F) \times 2.303 \log Q$
$E=Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right)$	$=E^{\circ}-(R T / n F) \times \ln Q$
$\Delta x \cdot \Delta(m v) \geq h / 4 \pi$	$E^{\circ}=(R T / n F) \times 2.303 \log K$
$q=4 \pi r^{2} \times 5.67 \times 10^{-8} \times T^{4}$	$=(R T / n F) \times \ln K$
	$E=E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right)$
Acids and Bases	Gas Laws
$\mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00$	$P V=n R T$
$\mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00$	$\left(P+n^{2} a / V^{2}\right)(V-n b)=n R T$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\}$	
Colligative properties	Kinetics
$\pi=c R T$	$t_{1 / 2}=\ln 2 / k$
$P_{\text {solution }}=X_{\text {solvent }} \times{ }^{\circ}{ }_{\text {solvent }}$	$k=A \mathrm{e}^{-E_{\mathrm{a}} / R T}$
$\mathrm{p}=\mathrm{kc}$	$\ln [\mathrm{A}]=\ln [\mathrm{A}]_{\mathrm{o}}-k t$
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} \mathrm{m}$	$\ln \frac{k_{2}}{2}=\frac{E_{\mathrm{a}}}{\mathrm{a}}\left(\frac{1}{m}-\frac{1}{\infty}\right)$
$\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m$	$\begin{array}{llll}k_{1} & R & T_{1} & T_{2}\end{array}$
Radioactivity	Thermodynamics \& Equilibrium
$t_{1 / 2}=\ln 2 / \lambda$	$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
$A=\lambda N$	$\Delta G=\Delta G^{\circ}+R T \ln Q$
$\ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t$	$\Delta G^{\circ}=-R T \ln K$
${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$	$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$
Polymers$R_{\mathrm{g}}=\sqrt{\frac{n l_{0}^{2}}{6}}$	Mathematics
	If $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
	$\ln x=2.303 \log x$

PERIODIC TABLE OF THE ELEMENTS

	1	2	3			5	6	7	8	9	10	11		12		13	14	15	16	17	18
																					$\begin{gathered} \hline 2 \\ \text { нецим } \\ \mathbf{H e} \\ 4.003 \\ \hline \end{gathered}$
	$\begin{gathered} \hline 3 \\ \substack{\text { цтним } \\ \mathbf{L i} \\ 6.941} \end{gathered}$															$\begin{gathered} \substack{5 \\ \text { Borov } \\ \mathbf{B} \\ 10.81} \end{gathered}$		$\begin{gathered} \hline 7 \\ \substack{\text { мrtrocen }} \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ \begin{array}{c} 8 \times c e n \\ \text { ox } \\ \mathbf{O} \\ 16.00 \end{array} \end{gathered}$	$\begin{gathered} 9 \\ \hline \text { froorne } \\ \mathbf{F} \\ 19.00 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ \text { NEDN } \\ \mathbf{N e} \\ 20.18 \end{gathered}$
	$\begin{gathered} \hline 11 \\ \text { sonum } \\ \text { Na } \\ 22.99 \\ \hline \end{gathered}$	12 macnesum $\mathbf{M g}$ 24.31 20														$\begin{gathered} \hline 13 \\ \text { Аичмпммм } \\ \text { Al } \\ 26.98 \\ \hline \end{gathered}$	14 sulcon $\mathbf{S i}$ 28.09	$\begin{gathered} \hline 15 \\ \text { phosporus } \\ \mathbf{P} \\ 30.97 \\ \hline \end{gathered}$	$\begin{gathered} \hline 16 \\ \text { surfur } \\ \mathbf{S} \\ 32.07 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ \text { chlorne } \\ \mathbf{C l} \\ 35.45 \\ \hline \end{gathered}$	$\begin{gathered} \hline 18 \\ \text { arcon } \\ \mathbf{A r} \\ 39.95 \\ \hline \end{gathered}$
	$\begin{gathered} \hline 19 \\ \text { porassum } \\ \mathbf{K} \\ 39.10 \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ \text { саисим } \\ \text { Ca } \\ 40.08 \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ \text { scannum } \\ \text { Sc } \\ 44.96 \\ \hline \end{gathered}$	$\begin{gathered} \hline 22 \\ \text { тাтамим } \\ \mathbf{T i} \\ 47.88 \\ \hline \end{gathered}$		$\begin{gathered} 23 \\ \substack{23 \\ \text { vanamum } \\ \mathbf{V} \\ 50.94 \\ \hline} \end{gathered}$	$\begin{gathered} 24 \\ \text { c.rвonum } \\ \mathbf{C r} \\ 52.00 \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ \text { MANGNESE } \\ \mathbf{M n} \\ 54.94 \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ \text { иroм } \\ \text { Fe } \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 27 \\ \text { соват } \\ \mathbf{C o} \\ 58.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 28 \\ \text { NсккL } \\ \mathbf{N i} \\ 58.69 \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ \text { coper } \\ \mathbf{C u} \\ 63.55 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 9 \\ & \hline \text { Per } \\ & \mathbf{u} \\ & .55 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 30 \\ \text { zunc } \\ \text { Zn } \\ 65.39 \\ \hline \end{gathered}$		$\begin{gathered} \hline 31 \\ \text { Gauluм } \\ \text { Ga } \\ 69.72 \\ \hline \end{gathered}$	$\begin{gathered} \hline 32 \\ \text { сввмалим } \\ \text { Ge } \\ 72.59 \\ \hline \end{gathered}$	$\begin{gathered} \hline 33 \\ \text { ARENIC } \\ \text { As } \\ 74.92 \\ \hline \end{gathered}$	$\begin{gathered} \hline 34 \\ \text { shenve } \\ \text { Se } \\ 78.96 \\ \hline \end{gathered}$	$\begin{gathered} \hline 35 \\ \text { вRomine } \\ \mathbf{B r} \\ 79.90 \\ \hline \end{gathered}$	$\begin{gathered} \hline 36 \\ \hline \text { кертом } \\ \mathbf{K r} \\ 83.80 \\ \hline \end{gathered}$
	$\begin{gathered} \hline 37 \\ \text { Rubinum } \\ \text { Rb } \\ 85.47 \\ \hline \end{gathered}$	38 30 strontuм $\mathbf{S r}$ 87.62 56		$\begin{array}{\|c\|} \hline 40 \\ \text { zrвсомим } \\ \mathbf{Z r} \\ 91.22 \\ \hline \end{array}$		$\begin{gathered} \hline 41 \\ \text { мовим } \\ \text { Nb } \\ 92.91 \\ \hline \end{gathered}$	42 моивbenum $\mathbf{M o}$ 95.94	$\begin{gathered} 43 \\ \text { тесниетим } \\ \text { Tc } \\ {[98.91]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 44 \\ \text { Ruthenum } \\ \mathbf{R u} \\ 101.07 \\ \hline \end{gathered}$	$\begin{gathered} \hline 45 \\ \text { Rнооим } \\ \mathbf{R h} \\ 102.91 \\ \hline \end{gathered}$	$\begin{gathered} 46 \\ \text { ранарим } \\ \text { Pd } \\ 106.4 \end{gathered}$	$\begin{array}{r} 47 \\ \text { suver } \\ \mathbf{A g} \\ 107.8 \\ \hline \end{array}$	$\begin{aligned} & \hline 7 \\ & \hline \mathbf{v e R} \\ & \mathbf{g} \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ \begin{array}{c} 48 \text { canum } \\ \text { Cd } \\ 112.40 \end{array} \\ \hline \end{gathered}$		$\begin{gathered} 49 \\ \text { ñoum } \\ \text { In } \\ 114.82 \\ \hline \end{gathered}$	$\begin{array}{c\|c} \hline & \begin{array}{c} 50 \\ \text { TN } \\ \text { Sn } \\ 2118.69 \end{array} \\ \hline \end{array}$	$\begin{gathered} \hline 51 \\ \text { Аیтімому } \\ \mathbf{S b} \\ 121.75 \\ \hline \end{gathered}$	$\begin{gathered} \hline 52 \\ \text { тешиним } \\ \mathbf{T e} \\ 127.60 \\ \hline \end{gathered}$	$\begin{gathered} 53 \\ \text { IonNe } \\ \mathbf{I} \\ 126.90 \\ \hline \end{gathered}$	$\begin{gathered} 54 \\ \text { Xenow } \\ \mathbf{X e} \\ 131.30 \\ \hline \end{gathered}$
	$\begin{gathered} 55 \\ \text { савsum } \\ \text { Cs } \\ 132.91 \\ \hline \end{gathered}$	$\begin{gathered} \hline 56 \\ \text { вавим } \\ \mathbf{B a} \\ 137.34 \\ \hline \end{gathered}$	57-71	$\begin{array}{\|c\|} \hline 72 \\ \text { HАЕNum } \\ \text { Hf } \\ 178.49 \\ \hline \end{array}$		$\begin{gathered} \hline 73 \\ \text { тамтаим } \\ \mathbf{T a} \\ 180.95 \\ \hline \end{gathered}$		$\begin{gathered} \hline 75 \\ \text { RHENUM } \\ \mathbf{R e} \\ 186.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 76 \\ \text { osnum } \\ \text { Os } \\ 190.2 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 77 \\ \text { remoum } \\ \text { Ir } \\ 192.22 \\ \hline \end{array}$	$\begin{gathered} \hline 78 \\ \text { рцатмем } \\ \mathbf{P t} \\ 195.09 \\ \hline \end{gathered}$	$\begin{array}{r} 79 \\ \text { coup } \\ \mathbf{A u} \\ 196.9 \\ \hline \end{array}$	$\begin{aligned} & \hline 9 \\ & \mathbf{t o} \\ & \mathbf{u} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 80 \\ \text { Mercury } \\ \mathbf{H g} \\ 200.59 \\ \hline \end{gathered}$		$\begin{gathered} \hline 81 \\ \text { тиамичм } \\ \text { Tl } \\ 204.37 \\ \hline \end{gathered}$	82 82 $\mathbf{L E A D}$ $\mathbf{P b}$ 207.2	$\begin{gathered} 83 \\ \text { Biswurn } \\ \mathbf{B i} \\ 208.98 \\ \hline \end{gathered}$	$\begin{gathered} 84 \\ \text { poonven } \\ \mathbf{P o} \\ {[210.0]} \end{gathered}$	$\begin{gathered} 85 \\ \begin{array}{c} \text { Astatine } \\ \mathbf{A t} \\ {[210.0]} \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 86 \\ \substack{\text { Ranow } \\ \mathbf{R n} \\ [222.0] \\ \hline} \end{gathered}$
	$\begin{gathered} 87 \\ \text { francum } \\ \text { Fr } \\ {[223.0]} \\ \hline \end{gathered}$	88 Ranum $\mathbf{R a}$ [226.0] 8	89-103			105 duñum Db $[262]$	$\begin{gathered} \hline 106 \\ \text { sевованм } \\ \text { Sg } \\ {[266]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 107 \\ \text { soниuм } \\ \mathbf{B h} \\ {[262]} \\ \hline \end{gathered}$		$\begin{array}{c\|} \hline 109 \\ \text { мепाлевuм } \\ \mathbf{M t} \\ {[266]} \\ \hline \end{array}$											
	LANTHANIDES	$\begin{gathered} 57 \\ \text { Lалтнамм } \\ \mathbf{L a} \\ 138.91 \\ \hline \end{gathered}$	$\begin{gathered} \hline 58 \\ \substack{\text { cॄRIUм } \\ \text { Ce } \\ 140.12 \\ \hline} \end{gathered}$		59 praseopymum $\mathbf{P r}$ 140.91 91		$\begin{gathered} \hline 60 \\ \text { меормим } \\ \text { Nd } \\ 144.24 \\ \hline \end{gathered}$	61 Рвомвгним $\mathbf{P m}$ $[144.9]$	$\begin{gathered} \hline 62 \\ \text { samarum } \\ \text { Sm } \\ 150.4 \\ \hline \end{gathered}$	$\begin{gathered} 63 \\ \text { Europuм } \\ \text { Eu } \\ 151.96 \\ \hline \end{gathered}$	$\begin{gathered} 64 \\ \text { Ganolñum } \\ \text { Gd } \\ 157.25 \\ \hline \end{gathered}$				$\begin{gathered} 66 \\ \text { dxyressum } \\ \text { Dy } \\ 162.50 \\ \hline \end{gathered}$		$\begin{gathered} 67 \\ \text { ноомим } \\ \mathbf{H o} \\ 164.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 68 \\ \text { عевит } \\ \text { Er } \\ 167.26 \\ \hline \end{gathered}$	$\begin{gathered} \hline 69 \\ \text { тийим } \\ \mathbf{T m} \\ 168.93 \\ \hline \end{gathered}$	$\begin{gathered} 70 \\ \text { мттввим } \\ \mathbf{Y b} \\ 173.04 \\ \hline \end{gathered}$	$\begin{gathered} 71 \\ \text { нивгим } \\ \mathbf{L u} \\ 174.97 \\ \hline \end{gathered}$
$\frac{2}{9}$	ACtinides	$\begin{gathered} 89 \\ \text { Астлим } \\ \text { Ac } \\ {[227.0]} \end{gathered}$		$\begin{gathered} \hline 90 \\ \hline \text { тновим } \\ \text { Th } \\ 232.04 \\ \hline \hline \end{gathered}$		91 otactinium Pa [231.0]	$\begin{gathered} 92 \\ \text { uranum } \\ \mathbf{U} \\ 238.03 \\ \hline \end{gathered}$		$\begin{gathered} \hline 94 \\ \text { puronum } \\ \mathbf{P u} \\ {[239.1]} \\ \hline \end{gathered}$	95 $\left.\begin{array}{c}9 \text { AмеRстим } \\ \text { Am } \\ \text { [243.1] }\end{array}\right]$			$\begin{gathered} 97 \\ \text { веккниш } \\ \text { Bk } \\ {[247.1]} \end{gathered}$		$\begin{gathered} 98 \\ \text { calıornuм } \\ \mathbf{C f} \\ {[252.1]} \end{gathered}$	um 1]	99 епsтाепим Es $[252.1]$	$\begin{gathered} \hline 100 \\ \text { ғевиим } \\ \text { Fm } \\ {[257.1]} \\ \hline \end{gathered}$	101 мепNeLrvum Md $[256.1]$	$\begin{gathered} 102 \\ \text { мовним } \\ \text { No } \\ {[259.1]} \end{gathered}$	

