1. A buffered solution is 0.0500 M CH₃COOH and 0.0400 M NaCH₃CO₂. If 0.0100 mol of gaseous HCl is added to 1.00 L of the buffered solution, what is the final pH of the solution? For acetic acid, $pK_a = 4.76$
 a) 4.76 b) 4.46 c) 4.66 d) 4.86 e) 4.54

2. In each of the following titrations, the first solution is in the burette and the second solution is in the titration flask. For which titration would the curve illustrated be typical?

 ![Graph showing titration curve]

 a) Na₂CO₃ (0.05 M) / HCl (0.1 M)
 b) NaOH (0.1 M) / HI (0.1 M)
 c) NaOH (0.1 M) / CH₃COOH (0.1 M)
 d) NH₃ (0.1 M) / CH₃COOH (0.1 M)
 e) NH₃ (0.1 M) / HCl (0.1 M)

3. What is the pH of a 0.045 M solution of KOBr? The pK_a of HOBr is 8.63.
 a) 4.74 b) 4.99 c) 8.25 d) 9.01 e) 10.64

4. Alongside H₂O, what are the major species present in a 1.0 M solution of HCl?
 a) HCl(aq), H₃O⁺(aq) and Cl⁻(aq)
 b) H₃O⁺(aq) and Cl⁻(aq)
 c) HCl(aq)
 d) HCl(aq), H₃O⁺(aq), OH⁻(aq) and Cl⁻(aq)
 e) H₃O⁺(aq), OH⁻(aq) and Cl⁻(aq)

5. Which one of the following statements concerning crystal structures is correct?
 a) The arrangement of layers in the hexagonal close-packed structure (hcp) is abcabcabc….
 b) The packing efficiency of the face-centred cubic unit cell of aluminium is 52%.
 c) The packing efficiency of zinc, which has hexagonal close-packed structure, is 68%.
 d) The coordination number in a primitive cubic unit cell of polonium is 6.
 e) The face-centred cubic unit cell of nickel contains 2 atoms per unit cell.
6. The unit cell below has anions (X) at the corners and cations (M) in the centre of the cell. What is the formula of the compound?

a) MX
b) MX₂
c) M₂X₃
d) M₂X
e) MX₃

7. The K_{sp} for silver chloride is 1.8×10^{-10} at 25 °C. What is the solubility of silver chloride (in mol L⁻¹) in 0.025 M tin(IV) chloride solution?

a) 8.5×10^{-5}
b) 6.7×10^{-8}
c) 7.2×10^{-9}
d) 1.8×10^{-9}
e) 1.3×10^{-5}

8. In which of the following are the atoms arranged in order of INCREASING first ionisation energy?

a) Ne, F, O, C
b) Te, Se, S, O
c) Ca, K, Cl, Ar
d) He, Ne, Ar, Kr
e) N, P, K, Rb

Questions 9 & 10 refer to the solubility of cadmium hydroxide, Cd(OH)₂:

Cd(OH)₂(s) \rightleftharpoons Cd²⁺(aq) + 2OH⁻(aq)

9. The K_{sp} for Cd(OH)₂ is 5.9×10^{-15} at 25 °C. What is the solubility of Cd(OH)₂ in mol L⁻¹?

a) 7.7×10^{-8}
b) 5.4×10^{-8}
c) 1.1×10^{-5}
d) 5.9×10^{-15}
e) 1.8×10^{-5}

10. If 100. mL of 2.0×10^{-5} M Cd(NO₃)₂ is added to 100. mL of a solution of 2.0×10^{-5} M KOH, which statement is correct?

a) The ionic product is 1.0×10^{-15} and Cd(OH)₂(s) does not precipitate.
b) The ionic product is 1.0×10^{-15} and Cd(OH)₂(s) precipitates.
c) The ionic product is 1.0×10^{-10} and Cd(OH)₂(s) precipitates.
d) The ionic product is 1.0×10^{-10} and Cd(OH)₂(s) does not precipitate.
e) none of the above

Correct answers: 1B, 2B, 3E, 4B, 5D, 6A, 7D, 8B, 9C, 10A
1. A buffered solution is 0.450 M CH₃CO₂H and 0.450 M NaCH₃CO₂. If 0.0800 mol of solid NaOH is added to 1.00 L of the buffered solution, what is the final pH of the solution? For acetic acid, \(pK_a = 4.76 \) (\textit{Hint}: Use the Henderson-Hasselbalch Equation)

\[\text{a) 4.58} \quad \text{b) 4.60} \quad \text{c) 4.76} \quad \text{d) 4.90} \quad \text{e) 4.92} \]

2. In each of the following titrations, the first solution is in the titration flask and the second solution is in the burette. For which titration would the curve illustrated be typical?

\[\begin{array}{|c|c|c|c|c|}
\hline
\text{pH} & 7 & 5.5 & 0 & 14 \\
\hline
\text{Volume added} & \text{a) Na}_2\text{CO}_3 (0.05 \text{ M}) / \text{HCl} (0.1 \text{ M}) & \text{b) NaOH (0.1 M) / HI (0.1 M)} & \text{c) NaOH (0.1 M) / CH₃COOH (0.1 M)} & \text{d) NH}_3 (0.1 \text{ M}) / \text{CH₃COOH (0.1 M)} & \text{e) NH}_3 (0.1 \text{ M}) / \text{HCl (0.1 M)} \\
\hline
\end{array} \]

3. What is the pH of a 0.24 M solution of sodium fluoride? The \(pK_a \) of HF is 3.17.

\[\text{a) 5.72} \quad \text{b) 8.28} \quad \text{c) 9.26} \quad \text{d) 11.45} \quad \text{e) 13.38} \]

4. Alongside H₂O, what are the major species present in a 1.0 M solution of NaCN?

\[\begin{array}{|c|c|}
\hline
\text{a) NaCN(aq)} & \text{b) HCN(aq), Na}^+\text{(aq) and CN}^-\text{(aq)} \\
\hline
\text{c) HCN(aq), OH}^-\text{(aq), Na}^+\text{(aq) and CN}^-\text{(aq)} & \text{d) Na}^-\text{(aq) and CN}^-\text{(aq)} \\
\hline
\text{e) CN}^-\text{(aq), H}_3\text{O}^+\text{(aq), OH}^-\text{(aq) and Na}^+\text{(aq)} & \\
\hline
\end{array} \]

5. Which one of the following statements concerning crystal structures is correct?

\[\begin{array}{|c|}
\hline
\text{a) The packing efficiency of the body-centred cubic unit cell of iron is 68\%.} \\
\hline
\text{b) The coordination number in a face-centred cubic unit cell of polonium is 8.} \\
\hline
\text{c) The body-centred cubic unit cell of iron contains 1 atom per unit cell.} \\
\hline
\text{d) The arrangement of layers in the cubic close-packed structure (hcp) is abababab……} \\
\hline
\text{e) The packing efficiency of cobalt, which has hexagonal close-packed structure, is 68\%.} \\
\hline
\end{array} \]
6. The unit cell below has anions (X) at the corners and cations (M) in the centre of each face. What is the formula of the compound?
 a) MX
 b) MX₂
 c) M₃X
 d) M₂X
 e) M₂X₃

7. The K_{sp} for lead(II) chloride is 1.7×10^{-5} at 25 °C. What is the solubility of lead(II) chloride (in mol L⁻¹) in 1.00 M magnesium chloride solution?
 a) 1.2×10^{-6}
 b) 4.3×10^{-6}
 c) 5.7×10^{-7}
 d) 6.2×10^{-8}
 e) 1.4×10^{-9}

8. In which of the following are the ions arranged in order of DECREASING ionic radius?
 a) Sn⁴⁺, In³⁺, Sr²⁺, Rb⁺
 b) Na⁺, Mg²⁺, O²⁻, F⁻
 c) I⁻, Cl⁻, Br⁻, F⁻
 d) Cs⁺, Ba²⁺, Tl³⁺, Pb⁴⁺
 e) Mg²⁺, Al³⁺, S²⁻, Cl⁻

Questions 9 & 10 refer to the solubility of iron(II) phosphate, Fe₃(PO₄)₂:
 Fe₃(PO₄)₂(s) \rightleftharpoons 3Fe²⁺(aq) + 2PO₄³⁻(aq)

9. The K_{sp} for Fe₃(PO₄)₂(s) is 1.0×10^{-36} at 25 °C. What is the solubility of Fe₃(PO₄)₂ in mol L⁻¹?
 a) 2.5×10^{-8}
 b) 3.1×10^{-8}
 c) 6.3×10^{-8}
 d) 1.0×10^{-7}
 e) 4.0×10^{-7}

10. If 25.0 mL of 2.0×10^{-5} M FeSO₄ is added to 25.0 mL of a solution of 1.0×10^{-10} M K₃PO₄, which statement is correct?
 a) The ionic product is 8.0×10^{-35} and Fe₃(PO₄)₂(s) precipitates.
 b) The ionic product is 2.5×10^{-36} and Fe₃(PO₄)₂(s) precipitates.
 c) The ionic product is 8.0×10^{-35} and Fe₃(PO₄)₂(s) does not precipitate.
 d) The ionic product is 2.5×10^{-36} and Fe₃(PO₄)₂(s) does not precipitate.
 e) none of the above

Correct answers: 1E, 2E, 3B, 4D, 5A, 6C, 7B, 8D, 9A, 10B