A 1.0 L flask contains a mixture of hydrogen (8.0 atm), oxygen (4.0 atm) and neon (2.0 atm) at the stated partial pressures at a temperature of 40 °C. What is the total pressure inside the flask at 40 °C after the mixture is sparked. Ignore the vapour pressure of water.

a) 14.0 atm b) 10.0 atm c) 6.0 atm d) 2.0 atm e) 0.0 atm

2. Assuming ideal behaviour, what is the boiling point of a solution of sodium hydroxide (150.0 g) in water (900.0 g)? The boiling point elevation constant, $K_{\rm b}$, for water is 0.51 K kg mol⁻¹.

a) 106.38 °C b) 104.25 °C c) 102.13 °C d) 97.88 °C e) 95.75 °C

- 3. Which one of the following is **not** an example of a conjugate acid-base pair?
- a) NH₄⁺, NH₃
- b) HI, I[−]
- c) $CH_3CH_2OH_2^+$, $CH_3CH_2O^-$
- d) HSO₃⁻, SO₃²⁻
- e) H_2O, OH^-
- 4. Which one of the following sets of 0.1 M solutions is arranged in order of increasing boiling point?
- a) glucose < NaCl < NH_3 < Na_2SO_4
- b) glucose < HBr < Na_3PO_4 < Na_2SO_4
- c) $Na_2SO_4 < Na_3PO_4 < HBr < glucose$
- d) glucose < HBr < Na₂SO₄ < Na₃PO₄
- e) $HBr < Na_2SO_4 < Na_3PO_4 < glucose$

5. What is the pH of a 0.20 M solution of boric acid? The pK_a of boric acid is 9.24.

a) 0.70	b) 2.73	c) 4.97	d) 5.12	e) 5.87
	,	/	,	/

6. What is the pH of a 0.045 M solution of KOBr? The pK_a of HC

a) 4.74 b) 4.99 c) 8.25 d) 9.01 e) 10.64

7. A buffered solution is 0.0500 M CH₃COOH and 0.0400 M NaCH₃CO₂. If 0.0100 mol of gaseous HCl is added to 1.00 L of the buffered solution, what is the final pH of the solution? For acetic acid, $pK_a = 4.76$

a) 4.76 b) 4.46 c) 4.66 d) 4.86 e) 4.54

8. In each of the following titrations, the first solution is in the burette and the second solution is in the titration flask. For which titration would the curve illustrated be typical?

- a) Na₂CO₃ (0.05 M) / HCl (0.1 M)
- b) NaOH (0.1 M) / HI (0.1 M)
- c) NaOH (0.1 M) / CH₃COOH (0.1 M)
- d) NH₃ (0.1 M) / CH₃COOH (0.1 M)
- e) $NH_3 (0.1 \text{ M}) / \text{HCl} (0.1 \text{ M})$
- 9. What is the electronic configuration of Mn^{4+} ?
- a) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^1$ b) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^2$ c) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3$ d) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5$ e) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^9$

10. What is the systematic name for the coordination compound, [Mo(NH₃)₃(OH₂)₃]Cl₃?

a) triaquatriamminemolybdenum(VI) trichloride

b) triaquatriamminemolybdenum(III) trichloride

c) triamminetriaquamolybdenum(III) trichloride

- d) triaquatriamminemolybdenum(III) chloride
- e) triamminetriaquamolybdenum(III) chloride

Correct answers: 1D, 2B, 3C, 4D, 5C, 6E, 7B, 8B, 9C, 10E