Questions 1 & 2 refer to the solubility of lead chromate, PbCrO₄: PbCrO₄(s) \Longrightarrow Pb²⁺(aq) + CrO₄²⁻(aq)

1. The K_{sp} for PbCrO₄ is 2.0×10^{-16} at 25 °C. What is the solubility of PbCrO₄ in mol L⁻¹?

a) 1.4×10^{-8} b) 2.8×10^{-8} c) 2.0×10^{-16} d) 7.1×10^{7} e) 5.0×10^{15}

- 2. If 5.0 mL of 1.0×10^{-5} M Pb(NO₃)₂ is added to 5.0 mL of a solution of 1.0×10^{-10} M K₂CrO₄, which statement is correct?
- a) The ionic product is 1.0×10^{-15} and PbCrO₄(s) precipitates.
- b) The ionic product is 2.5×10^{-16} and PbCrO₄(s) does not precipitate.
- c) The ionic product is 1.0×10^{-15} and PbCrO₄(s) does not precipitate.
- d) The ionic product is 2.5×10^{-16} and PbCrO₄(s) precipitates.
- e) none of the above
- 3. The K_{sp} for nickel(II) hydroxide is 6×10^{-16} at 25 °C. What is the solubility of nickel(II) hydroxide (in mol L⁻¹) in a solution buffered at pH 10.5?

a) 6×10^{-5} b) 4×10^{-7} c) 6×10^{-9} d) 2×10^{-12} e) 1×10^{-14}

- 4. What is the concentration of $Zn^{2+}(aq)$ ions in the solution made by adding water to zinc nitrate (0.10 mol) and ammonia (3.0 mol) so that the final volume of solution is 1.5 L? The K_{stab} of $[Zn(NH_3)_4]^{2+}$ is 7.8×10^8
- a) $4.9 \times 10^{-11} \text{ M}$
- b) $9.5 \times 10^{-12} \,\mathrm{M}$
- c) 6.1×10^{-12} M
- d) 2.8×10^{-12} M
- e) 2.3×10^{-13} M
- 5. How many different stereoisomers (*i.e.* geometrical and optical isomers) of the complex $[Co(en)_3]^{3+}$ are possible? en = ethane-1,2-diamine = ethylenediamine = NH₂CH₂CH₂NH₂

a) 1 b) 2 c) 3 d) 4 e) 5

6. Consider the following galvanic cell and standard reduction potentials:

$$Ag^+(aq) + e^- \rightarrow Ag(s)$$
 $E^0 = 0.80 \text{ V}$

$$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$$
 $E^{0} = -0.13 V$

Which one of the following statements is TRUE?

- a) The cell on the left containing $Ag^{+}(aq)$ is the anode.
- b) The initial reading on the voltmeter would be 0.67 V.
- c) Oxidation occurs in the cell on the right containing $Pb^{2+}(aq)$.
- d) Negative charges will flow through the salt bridge from right to left.
- e) The silver electrode dissolves as the reaction proceeds.
- 7. Consider the following equation. Relevant standard reduction potentials are given in Q6.

$$2Ag^+ + Pb \iff 2Ag + Pb^{2+}$$

Which of the following is nearest to the equilibrium constant, K, at 298 K for this reaction?

a)
$$9.8 \times 10^5$$
 b) 8.6×10^6 c) 5.4×10^{15} d) 1.1×10^{22} e) 2.9×10^{31}

- 8. How much gold is deposited in 4.00 hours by the electrolysis of a solution of Na[AuCl₄] by a constant current of 0.37A?
- a) 10.9 g b) 5.44 g c) 3.63 g d) 2.72 g e) 2.18 g
- 9. Given the initial rate data below, what is the rate law for the following reaction?

$$2\text{ClO}_2(aq) + 2\text{OH}^-(aq) \rightarrow \text{ClO}_3^-(aq) + \text{ClO}_2^-(aq) + \text{H}_2\text{O}$$

$[ClO_2]_0$	$[OH^{-}]_{0}$	Initial rate
$(mol L^{-1})$	$(mol L^{-1})$	$(\text{mol } L^{-1} s^{-1})$
0.100	0.100	0.23
0.200	0.050	0.46
0.200	0.100	0.92

a) rate = $k[ClO_2][OH^-]^2$	b) rate = $k[ClO_2]^2[OH^-]$	c) rate = $k[ClO_2]^2[OH^-]^2$
d) rate = $k[ClO_2][OH^-]$	e) rate = $k[ClO_2]^3$	

10. Given the proposed mechanism below, what is the rate law for the following reaction?

a) rate = $k[H_2O_2(aq)][I^-(aq)]$ b) rate = $k[H_2O_2(aq)]^2$ c) rate = $k[HOI(aq)][I^{-}(aq)]$ e) rate = $k[H_2O_2(aq)^2[I^-(aq)]^2[H^+(aq)]^2$ d) rate = $k[H_2O_2(aq)]^2[I^-(aq)]^2$

Correct answers: 1A, 2D, 3C, 4B, 5B, 6C, 7E, 8C, 9B, 10A