1. A buffered solution is $0.0500 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ and $0.0400 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{CO}_{2}$. If 0.0100 mol of gaseous HCl is added to 1.00 L of the buffered solution, what is the final pH of the solution? For acetic acid, $\mathrm{p} K_{\mathrm{a}}=4.76$
a) 4.76
b) 4.46
c) 4.66
d) 4.86
e) 4.54
2. In each of the following titrations, the first solution is in the burette and the second solution is in the titration flask. For which titration would the curve illustrated be typical?

a) $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.05 \mathrm{M}) / \mathrm{HCl}(0.1 \mathrm{M})$
b) $\mathrm{NaOH}(0.1 \mathrm{M}) / \mathrm{HI}(0.1 \mathrm{M})$
c) $\mathrm{NaOH}(0.1 \mathrm{M}) / \mathrm{CH}_{3} \mathrm{COOH}(0.1 \mathrm{M})$
d) $\mathrm{NH}_{3}(0.1 \mathrm{M}) / \mathrm{CH}_{3} \mathrm{COOH}(0.1 \mathrm{M})$
e) $\mathrm{NH}_{3}(0.1 \mathrm{M}) / \mathrm{HCl}(0.1 \mathrm{M})$
3. In which of the following are the atoms arranged in order of INCREASING first ionisation energy?
a) $\mathrm{Ne}, \mathrm{F}, \mathrm{O}, \mathrm{C}$
b) $\mathrm{Te}, \mathrm{Se}, \mathrm{S}, \mathrm{O}$
c) $\mathrm{Ca}, \mathrm{K}, \mathrm{Cl}, \mathrm{Ar}$
d) $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}$
e) $\mathrm{N}, \mathrm{P}, \mathrm{K}, \mathrm{Rb}$
4. Alongside $\mathrm{H}_{2} \mathrm{O}$, what are the major species present in a 1.0 M solution of HCl ?
a) $\mathrm{HCl}(\mathrm{aq}), \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ and $\mathrm{Cl}^{-}(\mathrm{aq})$
b) $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ and $\mathrm{Cl}^{-}(\mathrm{aq})$
c) $\mathrm{HCl}(\mathrm{aq})$
d) $\mathrm{HCl}(\mathrm{aq}), \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}), \mathrm{OH}^{-}(\mathrm{aq})$ and $\mathrm{Cl}(\mathrm{aq})$
e) $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}), \mathrm{OH}^{-}(\mathrm{aq})$ and $\mathrm{Cl}^{-}(\mathrm{aq})$
5. Which one of the following statements concerning crystal structures is correct?
a) The arrangement of layers in the hexagonal close-packed structure (hcp) is abcabcabc....
b) The coordination number in a body-centred cubic unit cell of iron is 8 .
c) The packing efficiency of the face-centred cubic unit cell of calcium is 68%.
d) The packing efficiency of strontium, which has hexagonal close-packed structure, is 52%.
e) The body-centred cubic unit cell of tungsten contains 4 atoms per unit cell.
6. The unit cell below has anions (X) at the corners and cations (M) in the centre of the cell. What is the formula of the compound?
a) MX
b) MX_{2}
c) $\mathrm{M}_{2} \mathrm{X}_{3}$
d) $\mathrm{M}_{2} \mathrm{X}$
e) MX_{3}

7. The $K_{\text {sp }}$ for silver chloride is 1.8×10^{-10} at $25^{\circ} \mathrm{C}$. What is the solubility of silver chloride (in $\mathrm{mol} \mathrm{L}^{-1}$) in 0.025 M tin(IV) chloride solution?
a) 8.5×10^{-5}
b) 6.7×10^{-8}
c) 7.2×10^{-9}
d) 1.8×10^{-9}
e) 1.3×10^{-5}

Questions 8 \& 9 refer to the solubility of lead chromate, PbCrO_{4} :

$$
\mathrm{PbCrO}_{4}(\mathrm{~s}) \rightleftharpoons \mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})
$$

8. The $K_{\text {sp }}$ for PbCrO_{4} is 2.0×10^{-16} at $25^{\circ} \mathrm{C}$. What is the solubility of PbCrO_{4} in $\mathrm{mol} \mathrm{L}^{-1}$?
a) 1.4×10^{-8}
b) 2.8×10^{-8}
c) 2.0×10^{-16}
d) 7.1×10^{7}
e) 5.0×10^{15}
9. If 5.0 mL of $1.0 \times 10^{-5} \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is added to 5.0 mL of a solution of $1.0 \times 10^{-10} \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$, which statement is correct?
a) The ionic product is 1.0×10^{-15} and $\mathrm{PbCrO}_{4}(\mathrm{~s})$ precipitates.
b) The ionic product is 2.5×10^{-16} and $\mathrm{PbCrO}_{4}(\mathrm{~s})$ does not precipitate.
c) The ionic product is 1.0×10^{-15} and $\mathrm{PbCrO}_{4}(\mathrm{~s})$ does not precipitate.
d) The ionic product is 2.5×10^{-16} and $\mathrm{PbCrO}_{4}(\mathrm{~s})$ precipitates.
e) none of the above
10. How many different stereoisomers (i.e. geometrical and optical isomers) of the complex
$\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ are possible? en = ethane-1,2-diamine $=$ ethylenediamine $=\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
a) 1
b) 2
c) 3
d) 4
e) 5
11. A buffered solution is $0.450 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ and $0.450 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{CO}_{2}$. If 0.0800 mol of solid NaOH is added to 1.00 L of the buffered solution, what is the final pH of the solution? For acetic acid, $\mathrm{p} K_{\mathrm{a}}=4.76$ (Hint: Use the Henderson-Hasselbalch Equation)
a) 4.58
b) 4.60
c) 4.76
d) 4.90
e) 4.92
12. In each of the following titrations, the first solution is in the titration flask and the second solution is in the burette. For which titration would the curve illustrated be typical?

a) $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.05 \mathrm{M}) / \mathrm{HCl}(0.1 \mathrm{M})$
b) $\mathrm{NaOH}(0.1 \mathrm{M}) / \mathrm{HI}(0.1 \mathrm{M})$
c) $\mathrm{NaOH}(0.1 \mathrm{M}) / \mathrm{CH}_{3} \mathrm{COOH}(0.1 \mathrm{M})$
d) $\mathrm{NH}_{3}(0.1 \mathrm{M}) / \mathrm{CH}_{3} \mathrm{COOH}(0.1 \mathrm{M})$
e) $\mathrm{NH}_{3}(0.1 \mathrm{M}) / \mathrm{HCl}(0.1 \mathrm{M})$
13. In which of the following are the ions arranged in order of DECREASING ionic radius?
a) $\mathrm{Sn}^{4+}, \mathrm{In}^{3+}, \mathrm{Sr}^{2+}, \mathrm{Rb}^{+}$
b) $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{O}^{2-}, \mathrm{F}^{-}$
c) $\mathrm{I}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{F}^{-}$
d) $\mathrm{Cs}^{+}, \mathrm{Ba}^{2+}, \mathrm{Tl}^{3+}, \mathrm{Pb}^{4+}$
e) $\mathrm{Mg}^{2+}, \mathrm{Al}^{3+}, \mathrm{S}^{2-}, \mathrm{Cl}^{-}$
14. Alongside $\mathrm{H}_{2} \mathrm{O}$, what are the major species present in a 1.0 M solution of NaCN ?
a) $\mathrm{NaCN}(\mathrm{aq})$
b) $\mathrm{HCN}(\mathrm{aq}), \mathrm{Na}^{+}(\mathrm{aq})$ and $\mathrm{CN}^{-}(\mathrm{aq})$
c) $\mathrm{HCN}(\mathrm{aq}), \mathrm{OH}^{-}(\mathrm{aq}), \mathrm{Na}^{+}(\mathrm{aq})$ and $\mathrm{CN}^{-}(\mathrm{aq})$
d) $\mathrm{Na}^{+}(\mathrm{aq})$ and $\mathrm{CN}^{-}(\mathrm{aq})$
e) $\mathrm{CN}^{-}(\mathrm{aq}), \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}), \mathrm{OH}^{-}(\mathrm{aq})$ and $\mathrm{Na}^{+}(\mathrm{aq})$
15. Which one of the following statements concerning crystal structures is correct?
a) The arrangement of layers in the cubic close-packed structure (сср) is abcabcabc....
b) The coordination number in a body-centred cubic unit cell of iron is 6 .
c) The primitive cubic unit cell of polonium contains 2 atoms per unit cell.
d) The packing efficiency of the primitive cubic unit cell of polonium is 68%.
e) The packing efficiency of magnesium, which has hexagonal close-packed structure, is 68%.
16. The unit cell below has anions (X) at the corners and cations (M) in the centre of each face. What is the formula of the compound?
a) MX
b) MX_{2}
c) $\mathrm{M}_{3} \mathrm{X}$
d) $\mathrm{M}_{2} \mathrm{X}$
e) $\mathrm{M}_{2} \mathrm{X}_{3}$

17. The K_{sp} for barium sulfate is 1.1×10^{-10} at $25^{\circ} \mathrm{C}$. What is the solubility of barium sulfate (in $\mathrm{mol} \mathrm{L}^{-1}$) in 0.1 M iron(III) sulfate solution?
a) 1.1×10^{-10}
b) 2.2×10^{-10}
c) 3.7×10^{-10}
d) 5.5×10^{-10}
e) 1.0×10^{-5}

Questions 8 \& 9 refer to the solubility of iron(II) phosphate, $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$:

$$
\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s}) \rightleftharpoons 3 \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{PO}_{4}^{3-}(\mathrm{aq})
$$

8. The $K_{\text {sp }}$ for $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$ is 1.0×10^{-36} at $25^{\circ} \mathrm{C}$. What is the solubility of $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ in mol L ?
a) 2.5×10^{-8}
b) 3.1×10^{-8}
c) 6.3×10^{-8}
d) 1.0×10^{-7}
e) 4.0×10^{-7}
9. If 25.0 mL of $2.0 \times 10^{-5} \mathrm{M} \mathrm{FeSO}_{4}$ is added to 25.0 mL of a solution of $1.0 \times 10^{-10} \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4}$, which statement is correct?
a) The ionic product is 8.0×10^{-35} and $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$ precipitates.
b) The ionic product is 2.5×10^{-36} and $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$ precipitates.
c) The ionic product is 8.0×10^{-35} and $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$ does not precipitate.
d) The ionic product is 2.5×10^{-36} and $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$ does not precipitate.
e) none of the above
10. How many different stereoisomers (i.e. geometrical and optical isomers) of the complex $[\mathrm{Co}(\mathrm{en}) \mathrm{BrCl}(\mathrm{CN}) \mathrm{F}]^{-}$are possible? en $=$ethylenediamine $=\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
a) 4
b) 6
c) 8
d) 12
e) 16
