1. A buffered solution is $0.0500 \text{ M CH}_3\text{CO}_2\text{H}$ and $0.0400 \text{ M NaCH}_3\text{CO}_2$. If 0.0100 mol of gaseous HCl is added to 1.00 L of the buffered solution, what is the final pH of the solution? For acetic acid, $pK_a = 4.76$

- a) 4.76
- b) 4.46
- c) 4.66
- d) 4.86
- e) 4.54

2. In each of the following titrations, the first solution is in the burette and the second solution is in the titration flask. For which titration would the curve illustrated be typical?

- a) $Na_2CO_3 (0.05 M) / HCl (0.1 M)$
- b) NaOH (0.1 M) / HI (0.1 M)
- c) NaOH (0.1 M) / CH₃COOH (0.1 M)
- d) NH₃ (0.1 M) / CH₃COOH (0.1 M)
- e) $NH_3 (0.1 M) / HCl (0.1 M)$

3. In which of the following are the atoms arranged in order of INCREASING first ionisation energy?

- a) Ne, F, O, C
- b) Te, Se, S, O
- c) Ca, K, Cl, Ar
- d) He, Ne, Ar, Kr
- e) N, P, K, Rb

4. Alongside H₂O, what are the major species present in a 1.0 M solution of HCl?

- a) HCl(aq), $H_3O^+(aq)$ and $Cl^-(aq)$
- b) $H_3O^+(aq)$ and $Cl^-(aq)$
- c) HCl(aq)
- d) HCl(aq), H₃O⁺(aq), OH⁻(aq) and Cl(aq)
- e) $H_3O^+(aq)$, $OH^-(aq)$ and $Cl^-(aq)$

- 5. Which one of the following statements concerning crystal structures is correct?
- a) The arrangement of layers in the hexagonal close-packed structure (hcp) is abcabcabc....
- b) The coordination number in a body-centred cubic unit cell of iron is 8.
- c) The packing efficiency of the face-centred cubic unit cell of calcium is 68%.
- d) The packing efficiency of strontium, which has hexagonal close-packed structure, is 52%.
- e) The body-centred cubic unit cell of tungsten contains 4 atoms per unit cell.
- 6. The unit cell below has anions (X) at the corners and cations (M) in the centre of the cell. What is the formula of the compound?
- a) MX
- b) MX₂
- c) M_2X_3
- d) M_2X
- e) MX₃

- 7. The $K_{\rm sp}$ for silver chloride is 1.8×10^{-10} at 25 °C. What is the solubility of silver chloride (in mol L^{-1}) in 0.025 M tin(IV) chloride solution?
- a) 8.5×10^{-5}
- b) 6.7×10^{-8} c) 7.2×10^{-9}
- d) 1.8×10^{-9} e) 1.3×10^{-5}

Questions 8 & 9 refer to the solubility of lead chromate, PbCrO₄:

$$PbCrO_4(s) \rightleftharpoons Pb^{2+}(aq) + CrO_4^{2-}(aq)$$

- 8. The $K_{\rm sp}$ for PbCrO₄ is 2.0×10^{-16} at 25 °C. What is the solubility of PbCrO₄ in mol L⁻¹?

- a) 1.4×10^{-8} b) 2.8×10^{-8} c) 2.0×10^{-16} d) 7.1×10^{7}
- 9. If 5.0 mL of 1.0×10^{-5} M Pb(NO₃)₂ is added to 5.0 mL of a solution of 1.0×10^{-10} M K₂CrO₄, which statement is correct?
- a) The ionic product is 1.0×10^{-15} and PbCrO₄(s) precipitates.
- b) The ionic product is 2.5×10^{-16} and PbCrO₄(s) does not precipitate.
- c) The ionic product is 1.0×10^{-15} and PbCrO₄(s) does not precipitate.
- d) The ionic product is 2.5×10^{-16} and PbCrO₄(s) precipitates.
- e) none of the above
- 10. How many different stereoisomers (i.e. geometrical and optical isomers) of the complex $[Co(en)_3]^{3+}$ are possible? en = ethane-1,2-diamine = ethylenediamine = $NH_2CH_2CH_2NH_2$
- a) 1
- b) 2
- c) 3
- d) 4
- e) 5

Correct answers: 1B, 2B, 3B, 4B, 5B, 6A, 7D, 8A, 9D, 10B

- 1. A buffered solution is $0.450 \text{ M CH}_3\text{CO}_2\text{H}$ and $0.450 \text{ M NaCH}_3\text{CO}_2$. If 0.0800 mol of solid NaOH is added to 1.00 L of the buffered solution, what is the final pH of the solution? For acetic acid, $pK_a = 4.76$ (*Hint*: Use the Henderson-Hasselbalch Equation)
- a) 4.58
- b) 4.60
- c) 4.76
- d) 4.90
- e) 4.92
- 2. In each of the following titrations, the first solution is in the titration flask and the second solution is in the burette. For which titration would the curve illustrated be typical?

- a) Na₂CO₃ (0.05 M) / HCl (0.1 M)
- b) NaOH (0.1 M) / HI (0.1 M)
- c) NaOH (0.1 M) / CH₃COOH (0.1 M)
- d) NH₃ (0.1 M) / CH₃COOH (0.1 M)
- e) $NH_3 (0.1 M) / HCl (0.1 M)$
- 3. In which of the following are the ions arranged in order of DECREASING ionic radius?
- a) Sn^{4+} , In^{3+} , Sr^{2+} , Rb^{+}
- b) Na⁺, Mg²⁺, O²⁻, F⁻
- c) Γ , Cl^- , Br^- , F^-
- d) Cs⁺, Ba²⁺, Tl³⁺, Pb⁴⁺
- e) Mg²⁺, Al³⁺, S²⁻, Cl⁻
- 4. Alongside H₂O, what are the major species present in a 1.0 M solution of NaCN?
- a) NaCN(aq)
- b) HCN(aq), Na⁺(aq) and CN⁻(aq)
- c) HCN(aq), OH⁻(aq), Na⁺(aq) and CN⁻(aq)
- d) Na⁺(aq) and CN⁻(aq)
- e) $CN^{-}(aq)$, $H_3O^{+}(aq)$, $OH^{-}(aq)$ and $Na^{+}(aq)$

- 5. Which one of the following statements concerning crystal structures is correct?
- a) The arrangement of layers in the cubic close-packed structure (ccp) is abcabcabc....
- b) The coordination number in a body-centred cubic unit cell of iron is 6.
- c) The primitive cubic unit cell of polonium contains 2 atoms per unit cell.
- d) The packing efficiency of the primitive cubic unit cell of polonium is 68%.
- e) The packing efficiency of magnesium, which has hexagonal close-packed structure, is 68%.
- 6. The unit cell below has anions (X) at the corners and cations (M) in the centre of each face. What is the formula of the compound?
- a) MX
- b) MX₂
- c) M₃X
- d) M_2X
- e) M_2X_3

- 7. The $K_{\rm sp}$ for barium sulfate is 1.1×10^{-10} at 25 °C. What is the solubility of barium sulfate (in mol L^{-1}) in 0.1 M iron(III) sulfate solution?
- a) 1.1×10^{-10} b) 2.2×10^{-10} c) 3.7×10^{-10} d) 5.5×10^{-10} e) 1.0×10^{-5}

Questions 8 & 9 refer to the solubility of iron(II) phosphate, Fe₃(PO₄)₂:

$$Fe_3(PO_4)_2(s) \rightleftharpoons 3Fe^{2+}(aq) + 2PO_4^{3-}(aq)$$

- 8. The $K_{\rm sp}$ for Fe₃(PO₄)₂(s) is 1.0×10^{-36} at 25 °C. What is the solubility of Fe₃(PO₄)₂ in mol L⁻¹?
- a) 2.5×10^{-8}
- b) 3.1×10^{-8} c) 6.3×10^{-8} d) 1.0×10^{-7} e) 4.0×10^{-7}

- 9. If 25.0 mL of 2.0×10^{-5} M FeSO₄ is added to 25.0 mL of a solution of 1.0×10^{-10} M K₃PO₄, which statement is correct?
- a) The ionic product is 8.0×10^{-35} and Fe₃(PO₄)₂(s) precipitates.
- b) The ionic product is 2.5×10^{-36} and Fe₃(PO₄)₂(s) precipitates.
- c) The ionic product is 8.0×10^{-35} and Fe₃(PO₄)₂(s) does not precipitate.
- d) The ionic product is 2.5×10^{-36} and Fe₃(PO₄)₂(s) does not precipitate.
- e) none of the above
- 10. How many different stereoisomers (i.e. geometrical and optical isomers) of the complex $[Co(en)BrCl(CN)F]^-$ are possible? en = ethylenediamine = $NH_2CH_2CH_2NH_2$
- a) 4
- b) 6
- c) 8
- d) 12
- e) 16

1E, 2E, 3D, 4D, 5A, 6C, 7C, 8A, 9B, 10D Correct answers: