
Topic 6 – Alkyl halide and carbonyl compounds

Organic compounds containing a halogen

• Compounds are named in standard way, eg:

Structure and properties

- Dense liquids and solids which are insoluble in water .
- The C-X bond is polar with a slight positive charge (δ +) residing on the carbon end of the bond and a slight negative charge (δ -) on the halogen end .
- The carbon-halogen bond strength decreases in the order C-F > C-Cl > C-Br > C-I.

 Alkyl fluorides tend to be less reactive than other alkyl halides, mainly due to the higher strength of the C-F bond.

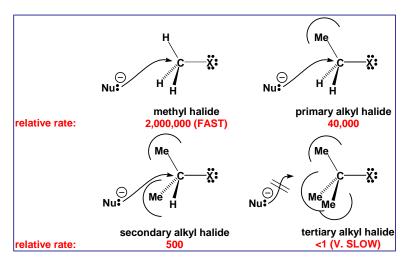
	Bond length (pm)	Bond strength (kJ mol ⁻¹)	Dipole moment (D)
CH ₃ -F	139	452	1.85
CH ₃ -Cl	178	351	1.87
CH₃-Br	193	293	1.81
CH ₃ -I	214	234	1.62

1. Nucleophilic substitution

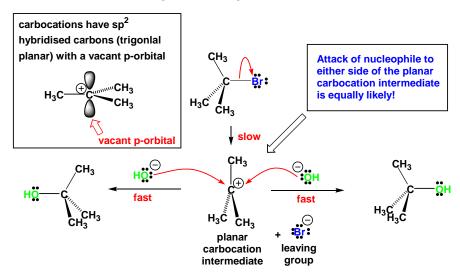
Electrophile: A species that seeks an electron pair

Nucleophile: A species that supplies an electron pair

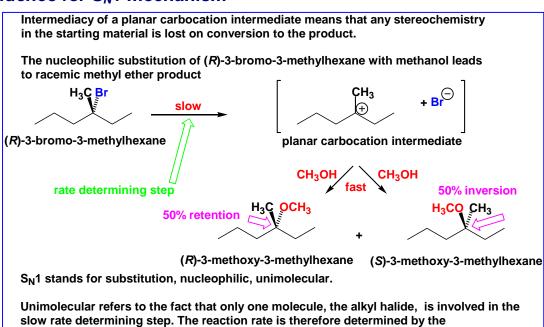
Examples:


A wide range of charged and uncharged nucleophiles may be employed

Nucleophile	+	H ₃ C—I		Product	+	Θ	Product class
н о:	+	δ⊕ δ⊝ H ₃ C—I		н₃с—ӧ҉н	+	þ	alcohol
R o:	+	H ₃ C—I	→	H₃C —Ö R	+	þ	ether
:N≡C:	+	H ₃ C—I		H ₃ C−C≡N\$	+	þ	nitrile
R—C≡C	+	H ₃ C—I		H ₃ C−C≡C−R	+	þ	alkyne
H ₂ N:	+	H ₃ C—I	→	H_3C — $\stackrel{\bullet\bullet}{N}H_2$	+	þ	amine
R ₃ N:	+	H³C—I	→	H_3C — NR_3	+	⊝ l t	etraalkylammonium salt

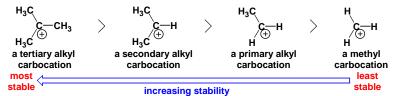

Question: Draw the organic products in the following reactions:

$Mechanism - S_N 2$ (2nd order)

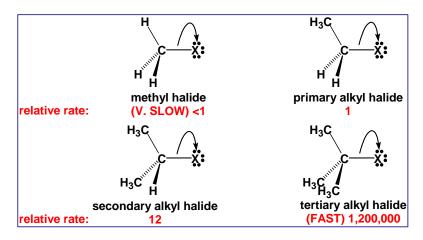

 $S_N 2$ reaction favoured by a primary alkyl halide as the starting material.

$Mechanism - S_N 1$ (1st order)

Evidence for S_N1 mechanism


concentration of the alkyl halide

Reaction Rate ∞ [electrophile]


Carbocations

The intermediate in an $S_N \mathbf{1}$ reaction is a carbocation.

- The C atom has six electrons and a positive charge.
- This is an unstable, highly reactive intermediate.
- Not all carbocations have the same relative (un)stability.

S_N1 reaction more likely when a tertiary carbocation is the intermediate

Comparison of S_N1 and S_N2

Summary S_N2 reaction:

Substitution, nucleophilic, second order

The reaction rate is determined by the concentration of both nucleophile and electrophile

Involves the direct, single step substitution of an alkyl halide by a nucleophile with no intermediates

The S_N2 reaction proceeds with inversion

The rate of the S_N2 reaction of alkyl halides decreases in the order methyl > $1^{\circ} > 2^{\circ} >> 3^{\circ}$

Usually only methyl, 1°and 2° alkyl halides react by this pathway - less crowded

Summary S_N1 reaction:

Substitution, nucleophilic, first order

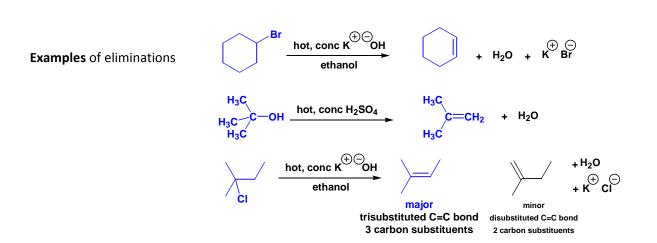
The reaction rate is determined by the concentration the electrophile only

Involves the two step substitution of an alkyl halide by a nucleophile via a carbocation intermediate

The S_N 1 reaction of chiral compounds proceeds with racemisation

The rate of the S_N1 reaction of alkyl halides decreases in the order $3^{\circ} >> 2^{\circ} > 1^{\circ} >$ methyl

Usually only 3° alkyl halides react by this pathway


Question: Fill in the missing reagents.

2. Elimination of HX

Dehydrohalogenation – require H and X on adjacent carbons.

- Generally concentrated reagents and elevated temperatures are used.
- Concentrated OH is used (often KOH in ethanol solvent).

Zaitsev's Rule applies – where there is a choice, the most substituted alkene forms.

Question: Fill in the reagents in the following sequence of reactions.

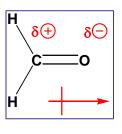
3. Formation of Grignard reagent

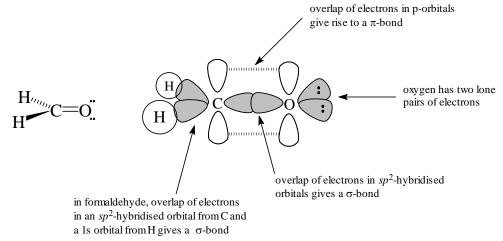
δ⊕

δΘ

This is the reaction of an alkyl- or aryl-halide and magnesium.

δΘ

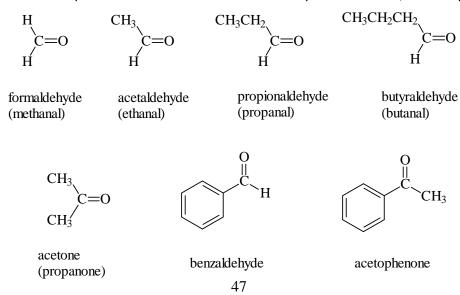

 $\delta \oplus$


$$R \longrightarrow X + Mg \longrightarrow R \longrightarrow Mg \longrightarrow X = CI, Br, I$$

$$R = alkyI, aromatic$$

Carbonyl Compounds – aldehydes and ketones

- The double bond is composed of one σ and one π bond.
- The electron density of a π bond is above and below the plane of the double bond.
- The C=O double bond is polarised.
- Aldehydes have at least one H attached to the carbonyl group, ketones have two carbon groups attached to the carbonyl group.
- Carbon of the carbonyl group is sp² hybridised.

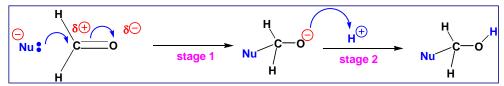

Nomenclature

Aldehydes

- The longest chain containing the CHO group gives the stem; ending –al.
- If substituents are present, start the numbering from the aldehyde group C1.

Ketones

- The longest chain containing the carbonyl group gives the stem; ending –one.
- If substituents are present number from the end of the chain so the carbonyl group has the lowest possible number.
- There are non-systematic names for the common aldehydes and ketone, for example:


Question: Name the following compounds.

$$O$$
 CH_2O O O O

Reactions of carbonyl group - nucleophilic addition

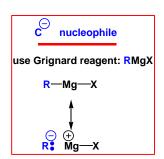
Dominated by weak and accessible π -bond

- Polarity of C=O directs addition reaction
- Reaction conducted in two stages
 - Nucleophile (eg hydride or carbanion) adds to C
 - Then O⁻ adds to H⁺

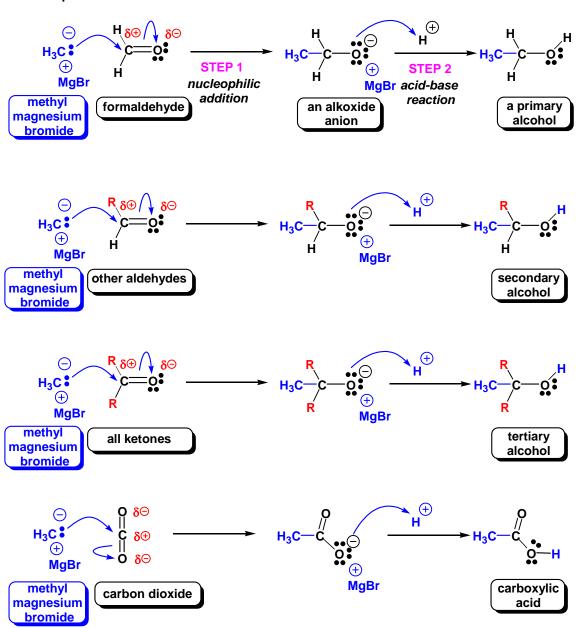
1. Hydride addition (reduction)

Use H⁻ (LiAlH₄ or NaBH₄) followed by H⁺

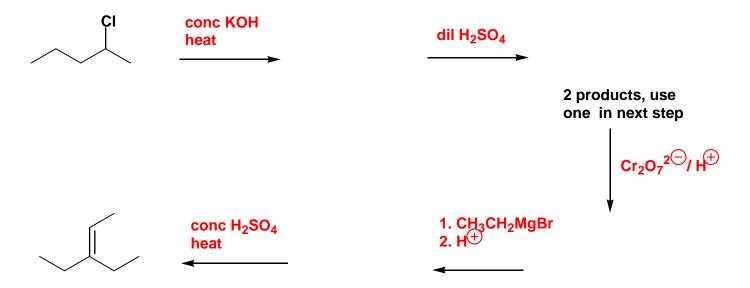
• Aldehydes give primary alcohols, ketones give secondary alcohols



Examples:


2. Grignard reaction

This is a very versatile reaction.


- Can use most organohalide compounds to generate Grignard reagent.
- Grignard reagent reacts with aldehydes, ketones and CO₂.
- Must employ anhydrous conditions.

Examples:

Question: Draw the products of the following sequence of reactions.

Question: In the Grignard reaction to form 3-methylhexan-3-ol there are three possible ketones that could be used as a starting material. Identify the three ketones and the Grignard reagent they need to react with to give the desired product.