Enthalpy Of Reaction ($\Delta_{rxn}H$)

CHEM1101 Worksheet 10: Enthalpy of Reaction ($\Delta_{rxn}H$)

Model 1: Endothermic and Exothermic Processes

Breaking bonds requires energy to pull the atoms apart: bond breaking is endothermic ($\Delta H > 0$). When bonds are formed, energy is released – precisely the same amount of energy which would be required to break those bonds: bond making is exothermic ($\Delta H < 0$).

In most chemical reactions, bonds are broken and made. Whether a reaction is endothermic or exothermic depends on the energy required to perform the *changes* in the bonding.

Critical thinking questions

- 1. Are the following reactions exothermic or endothermic?
 - (a) $H_2(g) \rightarrow 2H(g)$ (b) $Cl_2(g) \rightarrow 2Cl(g)$
 - (c) $H(g) + Cl(g) \rightarrow HCl(g)$

Model 2: Enthalpy of Atomization ($\Delta_{atom}H$) and Enthalpy of Atom Combination ($\Delta_{ac}H$)

Critical thinking questions

1. What is the relationship between $\Delta_{atom}H$ and $\Delta_{ac}H$ for a *compound* like H₂?

2. What is the value of ΔH for the overall process of separating one mole of H₂(g) into its constituent atoms and then reforming one mole of H₂(g)?

Enthalpy Of Reaction ($\Delta_{rxn}H$)

Model 3: Enthalpy of Reaction using $\Delta_{atom}H$ and $\Delta_{ac}H$

To determine the overall value of ΔH for a reaction, we can imagine the reaction taking place by:

- (i) breaking apart all of the reactant molecules into their constituent atoms: $\Delta_{atom}H$ (reactants)
- (ii) reassembling or combining these atoms into the product molecules: $\Delta_{ac}H$ (products)

The overall enthalpy of the reaction is then the sum of these parts:

Critical thinking questions

- 1. Why is the ΔH associated with the upward arrow in Model 3 a *positive* number?
- 2. Why is the ΔH associated with the downward arrow in Model 4 a *negative* number?

3. What is the value of ΔH for the overall reaction in Model 3?

4. Using your answer to Q2, rewrite the equation below so that it involves only $\Delta_{ac}H$ (reactants) and $\Delta_{ac}H$ (products).

 $\Delta_{\text{rxn}}H = \Delta_{\text{atom}}H (\text{reactants}) + \Delta_{\text{ac}}H (\text{products}) =$

5. Using your answer to Q2, rewrite the equation below so that it involves only $\Delta_{\text{atom}}H$ (reactants) and $\Delta_{\text{atom}}H$ (products).

 $\Delta_{\text{rxn}}H = \Delta_{\text{atom}}H \text{ (reactants)} + \Delta_{\text{ac}}H \text{ (products)} =$

6. If $\Delta_{ac}H$ for the reactants is more negative than $\Delta_{ac}H$ for the products in a chemical reaction, will $\Delta_{rxn}H$ be positive or negative? Explain your reasoning.

Enthalpy Of Reaction ($\Delta_{rxn}H$)

Model 4: Enthalpy of Reaction using $\Delta_{\rm f} H$

In Model 2, you developed a way of working out the value of enthalpy change for a reaction from the values of enthalpy of *atom* combination for the reactants and products. From Q7:

(4)

$$\Delta_{\rm rxn}H = \Delta_{\rm ac}H$$
 (products) - $\Delta_{\rm ac}H$ (reactants)

An alternative is to use the enthalpy change of formation of a compound ($\Delta_f H$) from its *elements* in their naturally occurring forms. At room temperature and pressure, these forms are called the **standard states** of the elements and include, for example, graphite for carbon and O₂(g) for oxygen.

Using this method, the equation for the enthalpy of reaction becomes:

$$\Delta_{\rm rxn} H^{\circ} = \Delta_{\rm f} H^{\circ} \,({\rm products}) - \Delta_{\rm f} H^{\circ} \,({\rm reactants}) \tag{5}$$

The enthalpy of formation of $CO_2(g)$ is then the energy change for its formation from graphite and $O_2(g)$:

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$

The enthalpy change for the combustion of methane is represented on the energy level diagram below. On the left, $CH_4(g)$ and $O_2(g)$ are broken up into their elements in the standard states, graphite (C(s)), $H_2(g)$ and $O_2(g)$. This is the *reverse* of their formation so the energy required is $-\Delta_f H^\circ$ (reactants). On the right, $CO_2(g)$ and $H_2O(g)$ are formed from the same elements in the same states so the energy change is $+\Delta_f H^\circ$ (products).

Critical thinking questions

- 1. Why are $\Delta_f H^{\circ}(O_2(g))$ and $\Delta_f H^{\circ}(H_2(g))$ both equal to 0 kJ? (*Hint*: what is the reaction in each case?)
- 2. What is $\Delta_{rxn}H^{\circ}$ for the reaction $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$?
- 3. Use equation (5) and the data below to calculate $\Delta_{rxn}H^{\circ}$ for the reaction MgO(s) + CO₂(g) \rightarrow MgCO₃(s). $\Delta_{f}H^{\circ}$: MgO(s) = -602 kJ mol⁻¹, CO₂(g) = -394 kJ mol⁻¹ and MgCO₃(s) = -1096 kJ mol⁻¹

CHEM1101			2009-N-12		Enthalpy Of Rea November 2	Enthalpy Of Reaction (Δ _{rxn} H) November 2009	
• Pe	• Pentane, CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ , burns completely in oxygen to form CO ₂ (g) and H ₂ O(g). Use the atomization enthalpies given below to calculate the enthalpy change for this process.						
		$\Delta_{\rm atom} H ({\rm kJ} {\rm mol}^{-1})$		$\Delta_{\text{atom}}H$ (kJ mol ⁻¹)			
	pentane	6352	CO ₂	1608			
	O ₂	498	H ₂ O	926			
			Answer:				
<u>our</u>	N 1 1 0 1		2007 1 (1 2007		

CHEM1101	
----------	--

2007-J-6

June 2007

		37 1				
•	• The current "petrochemical economy" is based on the combustion of fossil fuels, of which octane is a typical example.					
	$2C_8H_{18}(l) + 25O_2(g) \rightarrow 16CO_2(g) + 18H_2O(l)$					
	Calculate the heat of combustion of octane using the supplied heat of formation data.					
Data: $C_8H_{18}(l)$: -249.9 kJ mol ⁻¹ ; $CO_2(g)$: -393.5 kJ mol ⁻¹ ; $H_2O(l)$: -285.8 kJ mol ⁻¹						
	Answer:					