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Where Does Quantum Mechanics Come From?

Quantum mechanics was developed to explain experimental 
observations that could not be understood using the 
prevailing “classical” theories of physics, as well as 
theoretical inconsistencies with classical electromagnetic 
theory.

1. Spectroscopic Lines

• Moseley: discrete x-ray wavelengths
• Atomic spectra: discrete spectral wavelengths (called “lines”)

Light emitted by an excited atomic 
gas consists of discrete wavelengths, 
not a continuous band.



Where Does Quantum Theory Come From?
2. Photoelectric Effect

Light can eject electrons from a metal,
but only if its frequency is above a
threshold frequency (characteristic for
each metal).

Classically, for light as a wave, its energy is proportional to the square
of its amplitude.

For particles, energy is proportional to frequency.

Einstein (1905) proposed that light has particle nature
(as well as wave nature), i.e. light is quantized  (photons).



“The Bohr Atom”

3.  The Rutherford picture of an atom with electrons 
orbiting around a central atom is inconsistent with the 
laws of classical physics.  Unlike planets orbiting 
around a star, an orbiting electron is a moving charge 
and should radiate energy as it spirals towards the 
nucleus.

Neils Bohr, who had been working in Rutherford’s 
laboratory, developed a quantum model of a single electron 
near a hydrogen nucleus.  His model postulated a set of 
circular orbits for electrons with specific, discrete radii and 
energies and that electrons could move in each orbit without 
radiating energy (even though this violated classical ideas).

Bohr’s theory failed to (i) explain multi-electron atoms (ii) 
explain bonding and the formation of molecules and liquids 
and solids (iii) explain the intensities of atomic spectral lines 
(iv) even explain the “fine structure” in the H spectrum. 
Bohr’s model did not provide any reason for the discrete 
orbits or energies .

Bohr’s model proposed 
discrete or “quantised” 
allowed energies for 
the electron for the first 
time, and provided a 
rationale for discrete 
spectral lines.
It even gave the correct 
formula for the 
transition wavelengths 
for one-electron atoms 
and ions H, He+, Li2+,...



Quantum Theory and Matter Waves

In classical physics, nature consists of matter and energy, which are 
distinct from one another.

In quantum theory, mass and energy are not distinguished.  Matter 
(electrons, neutrons, atoms, molecules,…) behaves like a wave and 
energy (= radiation: light, x-rays, γ,...) behaves like a particle.

Quantum theory does not give us an intuitive picture of the fundamental 
nature of the universe.  Very small particles do not behave in a way that 
is familiar to us based on our (macroscopic) experience.

It began with the radical proposal of Louis de Broglie in 1924 that 
particles like electrons should exhibit wave-like character, and obey the 
equations that describe the behaviour of waves, just as light exhibits 
both particle and wave properties.



Quantum Theory and Matter Waves



Experimental Evidence for Electron Matter Waves

C.J. Davisson and L.H. Germer; G.P. Thomson (1927) Nobel Prize for Physics 
1937

Diffraction patterns produced by a beam of x-rays and electrons passing 
through Al foil :

X-rays electrons

Application: Electron microscopy



Mechanics of Waves

Waves are common in nature, and we have experience of many kinds of 
waves on a macroscopic scale.

E.g. Waves on a string
• guitar, violin strings etc. (transverse waves)

E.g. Sound waves.
• Flute (longitudinal waves)

Waves can be two or three dimensional, E.g.
• Bells or chimes; tuning fork; ripples on a pond

The properties or (mechanics) of waves are well-described by the laws 
of classical physics.  The problem of quantum mechanics is how to 
marry particle and wave character.



Mechanics of Waves

The behaviour of any wave moving in one direction (x) is described by 
the general wave equation

where F is the “thing that is waving.”  i.e.
• the transverse displacement of a string
• the pressure difference in a sound wave
• the magnitude of the electric or magnetic field

and v is the velocity of the wave. i.e.
• its speed along a string
• the speed of sound
• the speed of light, c.
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You are not expected to memorise or to 
use this equation.  We will simply use it 
to establish the historical context for the 
development of quantum mechanics and 
the quantum mechanical wave equation.



Electron Wavelengths

The de Broglie relation was first proposed in 
1924 to describe the wavelength of a particle, λ.

where p is the momentum, m the mass and v
the velocity.  h is the Planck constant 6.626 x 
10-34 J s.

Although this was just a postulate at the time, 
subsequent experiments have verified the 
accuracy of the relationship.  E.g. diffraction 
behaviour of electrons and neutrons of different 
velocities compared with x-rays of known 
wavelength. You are expected to know how to use 

this equation, which is significant 
because it relates a classical particle 
property (mass) to a wavelength, and 
is generally applicable to all particles.

h h
p mv

λ = =



Electron Wavelengths - Worked Example

What is the wavelength of an electron travelling at 5.0 x 106 m s-1?

The de Broglie relation

i.e. wavelength, λ = 6.626 x 10-34/(9.11 x 10-31 x 5.0 x 106)  J s kg-1 m-1 s

= 1.5 x 10-10 m or  0.15 nm 

h h
p mv

λ = =

Energy - Electron Volts
The usual (SI) unit of energy is the joule (J).  Another convenient unit is the 
electron volt, eV.  This describes the voltage needed to be applied to an 
electron to accelerate it to a kinetic energy E.

E.g. The electron above has a kinetic energy

0.5 x 9.11 x 10-31x(5.0 x 106)2 = 1.1 x 10-17J

or 1.1 x 10-17J/1.602 x 10-19 J/eV = 71eV.

21
2E mv= =

This wavelength is in the 
same range as an x-ray.



(Schrödinger’s) Wave Equation

In quantum mechanics the wave equation describes the behaviour of 
all matter.  Let’s first try to understand the parts of the wave equation.

ψ denotes the 
wavefunction.  The 
meaning of this 
function of position in 
space will take us 
some time to explore.

Planck’s constant, h/2π

= 1.055 x 10-34 J s.

2
2

2
V E

m
ψ ψ ψ− ∇ + =

h

The mass of the particle; 
in this case an electron

= 9.11 x 10-31 kg.

The energy of the particle 
(electron) - a number.

The potential energy that 
- a function of position in 
space.

The Laplace
operator.  
This takes the 
second derivative of 
the wavefunction in 
space.

The wave equation is a postulate of quantum mechanics.  There is no proof or 
evidence, except that it successfully describes aspects of the universe.  Like 

the de Broglie relation, it has been repeatedly verified by experiment.



(Schrödinger’s) Wave Equation

The wave equation is often treated in terms of operators.

2
2

2
V E

m
ψ ψ ψ− ∇ + =

h

The kinetic energy 
operator (take the 2nd 

derivative of the 
wavefunction and 
multiply by these 

constants).

The energy of the particle 
(electron) - a number.

The potential energy 
operator (multiply the 

potential energy function 
by the wavefunction)

The wave equation may be viewed as a statement about conservation of 
energy:

kinetic energy + potential energy = total energy.



(Schrödinger’s) Wave Equation

What does the wave equation tell us?

2
2

2
V E

m
ψ ψ ψ− ∇ + =

h

Solving the wave equation for a particular potential energy function tells 
us

1.  The wavefunction, ψ. 2.  A value for the energy, E.
The wave equation is a differential equation which typically has a set of 
solution functions (eigenfunctions), and a corresponding numerical 
value for E (an eigenvalue).

In this course you are not expected to solve any wave equations. However you 
will be expected to understand the wavefunction and allowed energies, so we 

need to go through the use of the wave equation in a bit of detail.



The Potential Energy Function

The potential energy of interaction between a proton and an electron is 
described by the equation  V(r) = -e2/4πε0r
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The electron (charge = -e) is attracted to the nucleus (charge = +e) by 
an electrostatic force.  The potential energy depends on the inverse of 
the distance between the nucleus and the electron, r, and on the 
product of the charges of the nucleus and the electron.

V(r) is zero when the proton and electron 
are an infinite distance apart, but is negative
at all values of r < ∞.  That is, the potential 
energy of the electron bound to the nucleus 
is lower than that of a free electron.

We use the term “bound” to describe an 
electron (or any particle) held in place by an 
attractive potential energy.



The Wave Equation for the Hydrogen Atom

To solve the wave equation for the hydrogen atom, we substitute the 
electrostatic potential energy of interaction:- V(r) = -e2/4πε0r

2
2
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h

For more complex quantum mechanical systems, other potential energy 
functions are used, as we shall see later.

Solving the wave equation for a particular potential energy function tells us

1.  The wavefunction, ψ. (next lecture)

2.  A value for the allowed energy, E, of each wavefunction



Allowed Energies of the Hydrogen Atom

The solution set of wavefunctions for the hydrogen atom has a set of 
allowed energies given by the equation

where n = 1, 2, 3,...
4

2 2 2

1
2n R
meE E

n n
= − = −

h

The Rydberg constant,

2.18 x 10-18 J

Allowed energies in quantum 
mechanics are often written in terms of 
a set of quantum numbers such as n.

There is one specific energy for each wavefunction, ψn.

These values tell us the energies that an electron is allowed to have 
when it is bound to a hydrogen nucleus.  The energies are discrete, or 
quantized.

That is, only certain specific values of E are allowed.  Values between, 
say -ER and -ER/4 (n = 1 & 2) cannot exist. If you want to see the details of 

the maths, read the Feynmann
Lectures on Physics, Lecture 19.



Allowed Energies of the Hydrogen Atom
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The lowest allowed energy of the hydrogen atom (n = 1) 
is E1 = -2.18 x 10-18 J.  For n = 2, E2 = -5.45 x 10-19 J; 
E3 = -2.42 x 10-19 J …

As n increases, En approaches the energy of an 
unbound electron, or 0.

The figure at right shows the allowed electronic 
energies of the hydrogen atom in their common 
representation as energy levels.  (20 levels are shown, 
but their spacing is too close to be seen on this scale for 
n > 4.)



Allowed Energies of Hydrogen-Like Atoms
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The Schrödinger equation can be solved for an electron 
bound by a nucleus of any charge.  What happens with 
other “Hydrogen-like” nuclei, e.g. He2+, N6+?

The potential energy function for a nucleus of atomic 
number (and hence charge) Z is:- V(r) = -Ze2/r.

The allowed energies now become

That is, the energy of the bound states is lowered by the 
increased attraction of the more highly charged nucleus.

2 4 2

2 2 22n R
mZ e ZE E

n n
= − = −

h

H He+ Li2+

Hydrogen-like atoms have been created in the laboratory and detected in 
space, and provide experimental verification of these allowed energies.



Spectroscopy and Transitions between States

Spectroscopy is the study of how light interacts with matter.  More 
specifically, it is the study of how photons of light can cause transitions 
between quantum states of an atom or molecules.

In electronic spectroscopy, light causes a change in the quantum state 
and therefore the energy of a bound electron.  This energy change is 
often diagnostic for the atom or molecule that binds the electron.  

Spectroscopy measures the energy difference between between 
allowed energy levels.

For hydrogen-like atoms, the difference between energy levels is given 
by

but how do we know the energy of light?

2
2 2

1 1
n m RE E E Z E

n m
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Light: Energy, Frequency, Wavelength

Light is an electromagnetic wave.  It oscillates with a characteristic 
frequency or wavelength.  Because the speed of light is fixed, the 
frequency, ν (nu), and wavelength, λ (lambda), are related by

where c is the speed of light, 3.0 x 108 m s-1.

The energy of a light wave is directly proportional to its frequency (and 
thus inversely proportional to its wavelength),

cν
λ

=

hcE hν
λ

= =



Energy, Frequency, Wavelength
Shorter wavelengths equate to higher frequency and higher energy.
We broadly classify electromagnetic (EM) radiation into wavelength or 
frequency bands.  In decreasing order of energy these are

γ-rays, x-rays, UV, visible light, infrared, microwaves, radiofrequency

Within the visible band, 
violet is highest in 
energy and red lowest.

Energy (J)
10-15                                              10-19                                         10-23                10-25                                            10-29



Energy, Frequency, Wavelength - Worked Example

E.g. Calculate the energy of red light

Referring to the previous diagram, λ = 750nm.  The energy is simply

E.g. Calculate the energy and wavelength of an x-ray of frequency 1018s-1.

The energy is

and the wavelength is 
8 1
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Atomic Spectroscopy - Worked Example

E.g. What wavelength of light will excite an electron in a hydrogen atom 
from n=1 to n=3?

First, calculate the energy difference for Z = 1, n = 3, m = 1

Now, calculate the wavelength corresponding to that energy

or 102 nm.
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This is an example of an atomic 
spectral line, which was part of 
the early evidence for quantum 
effects in nature.
We will examine these in more 
detail in Lectures 8 & 9.

This wavelength lies in 
the ultraviolet range.



Atomic Spectroscopy - Alternative Working

E.g. What wavelength of light will excite an electron in a hydrogen atom 
from n=1 to n=3?

First, equate the energy difference for Z = 1, n = 3, m = 1 to the photon 
energy
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This alternative is included because it also shows the form 
of the equation used (empirically) by Moseley in 1913 to fit 
his x-ray spectral lines (see lecture 5).
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Atomic Spectrum of Hydrogen
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Quantum mechanics can be used to explain atomic line spectra through 
these two relationships, which had previously been figured out empirically.  
That atomic visible line spectra of hydrogen fall into series had been 
known since Balmer in 1885 showed that they followed the equation

2 2

1 1 1
2

R
nλ

⎛ ⎞= −⎜ ⎟
⎝ ⎠

where R = ER/hc.

This series describes absorption or emission 
from hydrogen atoms with electrons in the 3rd, 
4th, 5th,  etc... energy levels dropping to the 
2nd allowed level.

Other series occur at higher (ultraviolet)

and at lower energies (infrared)
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Atomic Spectroscopy - Worked Example

E.g. What wavelength of light will excite an electron in a hydrogen atom 
from n=1 to n=3?

First, calculate the energy difference for Z = 1, n = 3, m = 1

Now, calculate the wavelength corresponding to that energy

or 102 nm.
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This is an example of an atomic 
spectral line, which was part of 
the early evidence for quantum 
effects in nature.
We will examine these in more 
detail in Lectures 8 & 9.

This wavelength lies in 
the ultraviolet range.



Mechanics of Waves

E.g.1.  Waves in one dimension: Waves on a (guitar) 
string

The guitar string is bounded at each end, and 
oscillates with a particular frequency.  The only waves 
that can be sustained by a string are those with zero 
amplitude at each end.  These are called nodes.

Amplitude is the magnitude of the displacement from 
the average position.  It can be positive (up) or 
negative (down).

In other words, the distance between the nodes (half-
wavelength) must divide into the total length of the 
guitar string an integer number of times.

These are known as standing waves or stationary 
states or normal modes of the string.

More nodes means a 
shorter wavelength.



Mechanics of Waves - Sound Waves

E.g.1.  Waves in one dimension: Waves on a (guitar) 
string

The lowest frequency mode, L = λ/2,  is called the 
fundamental frequency, ν, and has nodes only at the 
ends.  

The first harmonic is the next lowest frequency, and 
has one node at the mid-point: L = λ.  The frequency
is twice that of the fundamental, 2ν.

The second harmonic has two nodes between the 
end-points, and its frequency is 3 times the 
fundamental, 3ν : λ = 2L/3.

Etc., etc.

As with all waves, wavelength and frequency are related by
constantλ

ν
=



Mechanics of Waves on a Surface

E.g.2.  Waves in two dimensions: Modes of a drumhead

Standing waves can also be generated on a surface or thin membrane.  
A drumhead has a fixed perimeter, and oscillations on this surface lead 
to more complicated patterns of displacement and nodes

First, consider the fundamental mode of the membrane.  It is analogous to the 
fundamental of a vibrating string, and the diameter of the drum is λ/2.  The 
whole drumhead oscillates above and below the plane with an amplitude 
defined by the maximum displacement.

0 nodes

These waves can be represented as a contour plot, or 
simply as lobes of positive (above the plane) and negative 
(below the plane) displacement.  The fundamental 
oscillates between positive and negative with a frequency, 
ν.  The whole drum is either + or -. 



Mechanics of Waves on a Surface

The fundamental.

0 nodes

Like 1-D waves, the higher-
order harmonic oscillations in 
higher dimensions also have 
nodes (lines in 2-D) where the 
drumhead never moves.

The nodes are lines in the 
plane of the circumference of 
the drum.

1 circular node

2 circular nodes



Mechanics of Waves on a Surface

Membranes can also generate asymmetric
standing waves of various kinds.

In the simplest kind of harmonic the 
membrane is halved, making a linear 
node.

In another, it is quartered, giving two linear 
nodes at right angles.

These normal modes are described 
mathematically as orthogonal.  This 
simply means that you can’t create one 
of them by combining any two or more 
of the others.



Electrons as Waves in Three Dimensions

The wavefunctions that describe electrons are three-dimensional 
waves.  They have similar properties and features as one- and two-
dimensional waves. i.e.  Positive and negative lobes, and nodes (which 
are planes in 3-D).

The quantum description of an electron is simply a standing wave in 
three dimensions.

Like the modes of a drumhead, standing waves or stationary states in 3-
D may be spherically symmetric or asymmetric.

We can use a contour plot or lobe representation to describe an electron 
wave, but it is need simple representations of 3-D waves.



Spherically Symmetric Wavefunctions

The lowest energy (n=1) solution of the wave equation for the hydrogen 
atom corresponds to one, spherically symmetric, wavefunction.  The 
shape of the wavefunction is described by the equation

( ) exp( / )r rψ ρ= −

The Bohr radius, = 0.528Å

The wavefunction only 
depends on distance from 

the nucleus, r

This wavefunction can be represented as 
a graph of amplitude versus radial 
distance from the nucleus.

This wavefunction is called the 1s orbital
and corresponds to an energy 

E1 = -ER = -2.18 x 10-18 J
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ψ is a maximum 
at the nucleus.
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The 1s Orbital

This orbital can be represented as a radial function,

or as gradient or contour

or simply as a lobe.  

Note that there are no nodes in the 1s orbital.

This plot shows the amplitude of the 1s wavefunction, plotted 
as a function of distance, r, away from the nucleus.
The maximum amplitude is at the nucleus.

The intensity of the shading indicates the amplitude of the 
wavefunction, which is a maximum at the nucleus and 
decreases with increasing r.
Only 1/4 of the wavefunction is represented here.

The spherical lobe indicates the sign of the wavefunction, 
and its radius is an indication of how far the electron extends 
from the nucleus.  (This will be quantified later.)



Spherically Symmetric Orbitals
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Higher energy solutions to the wave equation have more than one 
wavefunction.  Like drums in 2-D, these can be radially symmetrical or not. 
Higher energy wavefunctions have more nodes (and shorter wavelengths).  The 
nodes of the radially symmetric wavefunctions are the surfaces of spheres.

1s                  2s                   3s                     4s

The lobe depiction of each of these 
s orbitals is a sphere, whose radius 
increases with quantum number n.
Nodes are only seen in cross-
section.

n=1                            n=2                            n=3                                    n=4

+ + + - +-
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E1

E2

E3Unlike a drumhead or a string, Unlike a drumhead or a string, 
an electron is not an electron is not fixedfixed

Boundary Conditions

at its at its 
perimeter or ends by a perimeter or ends by a 
mechanical device.  mechanical device.  An An 
electron wave is electron wave is boundedbounded by by 
the potential energy function the potential energy function 
which is not an abrupt step, which is not an abrupt step, 
but a but a smooth functionsmooth function.  For the .  For the 
hydrogen atom this bounding hydrogen atom this bounding 
potential is potential is VV((rr)) = = --ee22//rr..

Higher energy (and higher Higher energy (and higher 
quantum number) electron quantum number) electron 
wavefunctionswavefunctions extend farther extend farther 
from the nucleus.from the nucleus.



Non-spherical orbitals

The Schrödinger equation for the hydrogen atom also has solution
wavefunctions that are not spherically symmetrical.  These are easily 
seen to be analogous to the asymmetric drumhead modes.
The simplest form consists of two lobes separated by a nodal plane, 
and is denoted a a p-orbital.

+

-

The lobe representating the angular dependence of 
the wavefunctions are described by functions known 
as spherical harmonics.

There are three (orthogonal) p-orbitals, 
one with lobes oriented along each of 
the x-, y-, and z-axes.



Orbital Angular Momentum

As we have seen from the de Broglie relation, electrons have both 
wavelength and momentum.  Electrons bound in orbitals also have 
angular momentum, and this is described by two additional quantum 
numbers.

Like energy, angular momentum is quantised into discrete values.

• Spherically symmetric (s) orbitals have 0 angular momentum.

• Other orbitals have angular momenta that are integer multiples of 
h/2π.  This integer is the orbital angular momentum quantum 
number, l.

• l may take on any value between 0 and n-1;

For n = 1, l = 0 - Only an s orbital.
For n = 2, l = 0 (s orbital) or 1 (p orbitals)



Orbital Angular Momentum

The number of orbitals with angular momentum l×h/2π is determined 
by their shape.  This also determines the number of orthogonal 
wavefunctions - such as px, py, and pz.

This is characterised by the magnetic quantum number, m or ml. ml can 
take any integer value between -l and l, and describes the orientation
of the orbital.

For l = 0, ml = 0 (one s orbital)
For l = 1, ml = -1, 0, +1 (three p orbitals)

For a given l, there are always 2l+1 orbitals

In hydrogen-like (one electron) atoms, the energy of the wavefunction
depends only on the principal quantum number, n.  Thus for n = 1, 
there is one wavefunction (1s), for n = 2 there are four degenerate
wavefunctions - 2s, 2px, 2py, 2pz.

Quantum states or wavefunctions
of equal energy are referred to as 
degenerate.



3p and 3d Orbitals

When n = 3, then l can be 0 (one 3s orbital), 

l = 1 (three 3p orbitals) 

or l = 2 (d-orbitals).  3d orbitals have more lobes than 
2p orbitals, and their shape is obviously different.
For d-orbitals, m may take on five values:

+

-
+

-

3p orbitals have the same shape and 
designation as 2p orbitals (3pX, 3pY, 3pZ), 
but have an extra spherical node.

Higher quantum 
number n leads 
to more nodes 
in all orbitals.

3d orbitals have four lobes. The lobes point along pair of axes (dx2-y2), or between 
axes (dxy, dxz, dyz) or along the z axis (dz2). 



Higher n and l...

Higher principal quantum numbers and higher orbital angular 
momentum quantum numbers lead to more nodes and more lobes.

As l increases, the orbitals are denoted s, p, d, f, g, h,...

s, p, d & f are named for historical 
reasons - g, h,… just continue the 
alphabet
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The Born Hypothesis - Electron Density

Charge (electron) density is proportional 
to the square of the wavefunction ψ.  
This means that ψ2 is equivalent to the 
probability of finding an electron at a 
particular point in space.
ψ2 is always positive, so this removes the 
complication of the sign of the amplitude of 
the wave.
Squaring ψ changes lobe shape slightly, but 
the general features are the same.

ψ ψ 2

3s orbital

E.g. 
2pz orbital - same number of lobes and 
nodes

3dyz - same number of lobes and nodes



Meaning of the Lobes Representation

Because electrons are not bound within a perimeter, the radial part of 
all wavefunctions decays exponentially towards 0 as r → ∞.

This means the electron density also decays exponentially towards 0, 
so that there is a finite charge density even at a very large distance 
from the nucleus.  (There is a finite probability of finding an electron at 
a large distance from the nucleus.)

Lobes are commonly drawn to represent surfaces of constant 
probability.  E.g. The surface within which the probability of finding an 
electron is 95%; Alternatively the surface that contains 95% of the 
electronic charge density.

For s orbitals the probability is a function of radial distance only, so the 
size or extent of the lobes varies with probability but not the shape.



Experimental Observation

Orbital shapes are one of the 
unexpected predictions of quantum 
theory.  The experimental observable is 
electron density, which can be obtained 
from x-ray diffraction experiments on 
crystals.

The electron density in the 3dz2 orbital of 
Cu in Cu2O has been measured in this 
way, with the lobes clearly visible in the 
results.  This provides a powerful 
confirmation of the predictions of 
quantum theory. [Nature 401, 49 - 52 (1999)]

http://www.nature.com/cgi-
taf/DynaPage.taf?file=/nature/journal/v401/n6748/full/401049a0_r.html



Wavefunctions for the Hydrogen Atom

Solving the wave equation for a single electron bound to a proton (H)
2

2

2
V E

m
ψ ψ ψ− ∇ + =

h

tells us the allowed energies, En, and orbital 
wavefunctions (shapes or electron 
densities) for different quantum numbers, n
and l.

These may be represented as shown at 
right:

For hydrogen-like atoms, energy depends 
only on n, shape is described by l, and 
orientation is described by m.

How does quantum theory deal with more 
complex atoms and molecules?
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Quantum Theory of Atoms and Molecules

The wave equation describes the properties of all matter, but practically it 
can only be solved analytically (to give an equation for the wavefunction) 
in a small number of cases.  Quantum theory can be used in two broad 
ways when dealing with realistic chemical systems.

1.  Solve complicated potential energies numerically (computer solution)

2.  Develop approximations and principles or “rules” that we can carry 
about and use.

Even for the next simplest system, the 2-electron helium atom, the wave equation 
must be solved numerically.  Here is what it looks like.

( )
2 2 2 2

2 2
1 2

1 1 12

2 2
2

e e e E
m r r r

ψ ψ ψ ψ
⎛ ⎞

− ∇ + ∇ + − − + =⎜ ⎟
⎝ ⎠

h

Potential energies for 
interactions between both 
electrons & the nucleus.

Kinetic energies 
of both electrons.

This approach is used for both qualitative (understanding) and quantitative (calculation) 
chemistry, and you will see examples later in this course.

This approach is used to give us a toolkit and to develop intuition about the quantum world.



Many-Electron Atoms: The First Two Rules

The quantum state of an electron is specified by the orbital quantum 
numbers, n, l, and ml, plus an electron spin quantum number s.  So far 
we have neglected this property of electrons, and we will not say any 
more about it at this stage except to note that s can have one of two 
values, +½ or -½.

The Pauli Exclusion Principle says that no two electrons in an atom 
may have be in the same quantum state.  

• That is, no two electrons can have the same four quantum 
numbers, n, l, ml, and s.  

• This is equivalent to saying that no orbital (specified by n, l, and 
ml) can be occupied by more than two electrons.

The second rule is that electrons in atoms (and molecules) generally 
exist in their lowest possible energy state.  This is called the ground 
state.

This is enough to begin to handle multi-electron atoms, at least He.



Worked Example: The Ground State Electronic 
Configuration of He

Using the atomic orbitals obtained for the hydrogen atom, we fill orbitals 
beginning with the lowest energy.  (To do this we are pretty much 
ignoring the interactions between electrons, and treating them as two 
independent waves bound to the same (2+) nucleus.)

Electron 1 goes into the 1s orbital (n=1, l=0, m=0) with s = +½

Electron 2 goes into the 1s orbital (n=1, l=0, m=0) with s = -½

The ground state electron configuration of He is written as 1s2.  (For H it 
is written 1s1.)

What happens to the next electron?  
What is the ground state configuration of Li?



Filling the n = 2 orbitals:  Rule 3
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After He, the n =1 (1s) orbital is full.  According to the wave equation for 
the hydrogen atom, the 2s and three 2p orbitals all have the same 
energy, so the next electron could go into any of the four n =2 orbitals.

However we have already seen that the wavefunctions for the s and p orbitals 
are different.

The different effective nuclear charges lower the energy of the ns orbital relative 
to np, so the s orbital fills first with up to 2 electrons.  The ground state 
configuration of Li is 1s2 2s1, and for Be it is 1s2 2s2.

• s orbitals have their maximum amplitude at the 
nucleus.  This means that electrons in s orbitals 
are bound by the true nuclear charge (3+ for Li, 
etc.) 

• p orbitals have a node at the nucleus.  Their 
interaction with the nucleus is screened by 
electrons closer in, so electrons in 2p orbitals 
are bound by a lower effective charge.

ψ 2s ψ 2p
• s orbitals have their maximum amplitude at the 

nucleus.  This means that electrons in s orbitals 
are bound by the true nuclear charge (3+ for Li, 
etc.) 

• p orbitals have a node at the nucleus.  Their 
interaction with the nucleus is screened by 
electrons closer in, so electrons in 2p orbitals 
are bound by a lower effective charge.



Filling the n = 2 orbitals:  Rule 4

After Be, the 1s and 2s orbitals are full.  The 2p orbitals are next to fill.

Three 2p orbitals can accommodate a total of six electrons, which gives 
the configurations of elements B through to Ne.

B 1s2 2s2 2p1

C 1s2 2s2 2p2

N 1s2 2s2 2p3

O 1s2 2s2 2p4

F 1s2 2s2 2p5

Ne 1s2 2s2 2p6

This is summarised in Hund’s Rule, that the lowest energy electron configuration 
in orbitals of equal energy is the one with the maximum number of unpaired 
electrons with parallel spins.

In what order are the degenerate p-orbitals filled?

If we remember the shapes of p-orbitals, then putting 
one electron into each p-orbital will keep the electrons 
as far from each other as possible.  This is a way of 
accounting for the repulsive potential energy between 
electrons without actually solving the wave equation.



Hund’s Rule

Electron configurations are often represented in an orbital diagram, 
which explicitly shows the number and spin of electrons in various 
atomic orbitals.

H 1s1

He 1s2

Li 1s2 2s1

Be 1s2 2s2

B 1s2 2s2 2p1

C 1s2 2s2 2p2

N 1s2 2s2 2p3

O 1s2 2s2 2p4

F 1s2 2s2 2p5

Ne 1s2 2s2 2p6

1s      2s         2p

These orbitals contain 
unpaired electrons.  

The number of 
unpaired electrons in 
degenerate orbitals is 
maximised.



Filling higher orbitals
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The same rules apply for the order of orbital filling as we deduced for 
n =2.  First the 3s orbitals fill (Na & Mg), and then 3p (Al-Ar).

As the angular momentum quantum number, l, 
increases, the orbitals extend further from the 
nucleus, and all orbitals except s have nodes 
at the nucleus.  This means that the energy of 
an orbital increases with l for a given n.

This effect is big enough that the energy of the 4s 
orbital is lower than 3d.  The order of increasing
energies and of filling is shown in the diagram
at right.

3s

2s

4s

1s

3p

2p

4p 3d
4d 4f

An important consequence of this is in atomic spectroscopy 
(next lecture).  The energy level spacings or differences ∆E 
are unique to each atom, which means that we can identify 
atoms by their atomic absorbance or emission spectra.



Multi-Electron Configurations

7s 7p 7d 7f
6s 6p 6d 6f
5s 5p 5d 5f
4s 4p 4d 4f
3s 3p 3d
2s 2p
1s

The order of filling orbitals can easily be 
remembered using a diagonal pattern:-

The rules for generating electron 
configurations can be summarised as

1.  Pauli Exclusion Principle.  No two 
electrons in an atom may be in the same 
quantum state {n, l, m, s}
2.  Aufbau Principle.  Electrons adopt the 
lowest possible energy configuration.
3.  Penetration.  Orbitals of equal n nearest 
the nucleus have lowest energy: 

s < p < d < f...
4.  Hund’s Rule.  Maximise unpaired 
electron spins in degenerate orbitals.



Multi-Electron Configurations - Worked example

What are the electron configurations of atomic Ca and Ge?

Using the pattern at right as a guide, we fill the 
orbitals from the lowest energy.

Ca has 20 electrons, which we fill as follows

1s2 2s2 2p6 3s2 3p6 4s2         or        [Ar]4s2

or  [Ar]

Ge has 32 electrons, which we fill as follows

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p2

or        [Ar]4s2 3d10 4p2

or  [Ar]

7s 7p 7d 7f
6s 6p 6d 6f
5s 5p 5d 5f
4s 4p 4d 4f
3s 3p 3d
2s 2p
1s

Two unpaired electrons 
in p-orbitals.

No unpaired electrons.



Orbitals and Electron Shells

Periodic trends are related to electron configurations.  The classical 
model of the atom included the concept of electron “shells” derived from 
the row lengths in the periodic table.

Noble gases are unreactive because they contain filled electron shells.  
This emerges from quantum theory as a natural consequence of the
allowed orbital structure.

E.g. The electron configuration of argon

1s2 2s2 2p6 3s2 3p6 or [Ne] 3s2 3p6

Regular shapes 
were thought to 
underlie bonding, 
crystal structure, 
and other 
properties.

Classical orbit 
model with “shells” 
of 2, 8, 8…



Structure of the Periodic Table

Atoms with the same outer shell configuration are expected to have 
similar chemical properties.  Outer shell or valence electrons are 
important in the formation of chemical bonds (as we shall see later)
They will lie in the same group in the periodic table, and form 
compounds with the same stoichiometry.

E.g. Oxide Hydride
C [He] 2s2 2p2 CO2 CH4

Si [Ne] 3s2 3p2 SiO2 SiH4

Ge [Ar] 4s2 3d10 4p2 GeO2 GeH4

Sn [Kr] 5s2 4d10 5p2 SnO2 SnH4



Structure of the Periodic Table

The periodic table can be regarded in terms of electron configurations, 
denoted by orbital angular momentum quantum number.  The periodic 
table may thus be divided into s, p, d, and f blocks according to which 
orbital is being filled.

The s-block is 2 electrons “wide”, p-block is 6 (3 p-orbitals x 2 electron/orbital),
d-block is 10 (5x2), and the f-block is 14 (2x7).



Electron Configurations of d- and f-block Atoms

What you need to know

• How to write electron configurations of s- and p-block elements.
• Where the d- and f-block are on the periodic table, but

What you don’t need to know

...NOT individual configurations is the d- and f-blocks.

Why not? The orbital energies of ns and (n-1)d orbitals are affected by 
addition of electrons, and by electron-electron interactions.  This leads to some 
unusual effects like

V is [Ar]4s23d3 Cr is [Ar]4s13d5 Mn is [Ar]4s23d5

Nb is [Kr]5s14d4 Mo is [Kr]5s14d5 Tc is [Kr]5s14d6

As there are no simple rules for writing configurations of d- and f-block 
elements, you are not required to learn them.  Some will be dealt with later in 
the context of transition metal chemistry.



Periodic Atomic Properties and Quantum Theory

1. Atomic Radius

The atomic radius is determined by the electronic configuration, and 
particularly by how far the electron density extends from the nucleus.  
The wavefunctions and potential energy help make sense of the 
observed trends.

Down a group the radius increases as an entire new shell of electrons is 
added each new row.  This effect is especially noticeable in 
going up one atomic number from group 8 (noble gas) to 
the group 1 (alkali metal).  The one additional electron goes 
into the next s-orbital, increasing the radius markedly.

Across a row the radius decreases as the nuclear charge increases.  
Electrons are added to orbitals in the same shell (same n), 
so orbital contraction arises mainly from the increased 
attraction of the nucleus.  E.g. the radius shrinks from 
group 1 to group 2, where both outer shell electrons are in 
the same ns orbital.



Periodic Atomic Properties and Quantum Theory

1. Atomic Radius

Radius increases down a group as 
electrons add to new “shells.”

Across a row the radius decreases 
as the nuclear charge increases.

From group 8 (noble gas) to the 
group 1 (alkali metal).  The one 
additional electron goes into the 
next s-orbital, increasing the radius 
markedly.

Radii of the s- and p-block elements



Periodic Atomic Properties and Quantum Theory

2. Ionization Energy

Quantum theory also helps make sense of ionization energy trends.

He = 2400 kJ mol-1
Stepping down a group, the 
outer electrons of each element 
is another shell further away 
from the nucleus.  Inner 
electrons screen the nuclear 
attraction that binds the electron, 
so ionization becomes easier.

Across a row, electrons are 
added to the same shell.  The 
increase in nuclear charge 
without additional screening 
holds the electrons more tightly 
to the nucleus.



Periodic Atomic Properties and Quantum Theory

3. Electron Affinity (EA)

The electron affinity is like ionization energy.  It is the energy required to 
add an electron to a neutral atom in the gas phase.

The general trends in EA are hard to 
discern

We expect EA to decrease in magnitude
(less negative) down a group as we move 
further from the nucleus.  Only observed for 
Groups 1 and 8, or elements after Ne.

We expect EA to increase (more negative) 
across a row as the nuclear charge 
increases and size decreases.  There are 
plenty of exceptions to this.



Periodic Atomic Properties and Quantum Theory

3. Electron Affinity (EA)

Adding an electron is more sensitive to detailed electron configurations 
than ionization energy or atomic radius.  This is evident in the behaviour 
within some groups.
• Group 8 elements have closed shell 

configurations and positive EA’s, so they 
do not form anions.

• Groups 6 and 7 have large, negative 
EA’s, and readily form anions.

• Groups 1 & 2 have small EA’s and do not 
form anions easily.  A second electron 
can be added to Group 1 (ns1) more 
easily than Group 2 (ns2), which has a 
positive EA.

• Subtle effects in groups 3-5 arise from 
electron-electron and spin pairing 
interactions.



Summary I
You should now be able to

• Name the key experimental observations that led to the development 

of quantum mechanics.

• Convert between wavelength, frequency and energy of light. 

• Calculate the allowed energy of a hydrogen-like atom of atomic 

number Z and quantum number n, and the wavelength of a transition 

between energy levels.

• Identify the key features of waves in 1-3 dimensions -- displacement, 

amplitude, nodes

• Understand the representations of waves as cross-sectional graphs, 

contour plots and lobe representations

• Explain the meaning of the orbital quantum numbers, n, l, ml, and the 

designation of orbitals as e.g. 1s, 3d, 4p, 4f...



Summary II

• Recognise the shapes of atomic orbitals in these representations

• Understand how the wavefunction relates to electron charge density

• Draw out the electron configuration for atoms in the s- and p-blocks of 

the periodic table, including unpaired electrons.

• Explain why the orbitals with the same principal quantum number but 

different azimuthal quantum numbers have different energies in multi-

electron atoms.

• Explain the periodic trends in atomic radius and ionization energy in 

terms of quantum theory

• Define Electron Affinity and explain some features of its periodic 

trends in terms of electronic configurations derived from quantum 

theory.


