TOPIC 11.
OXIDATION AND REDUCTION REACTIONS.

Early concepts of oxidation.
The name "oxidation" was initially applied to reactions where substances combined with the element oxygen. Thus any substance burning in air was said to be oxidised, the product being some type of oxide. For example, burning carbon to produce carbon dioxide is an oxidation, as shown by the equation

$$\text{C} + \text{O}_2 \rightarrow \text{CO}_2$$

Subsequently it was realised that reactions of substances with elements other than oxygen were of essentially the same type. For example, hydrogen can react with oxygen to form the compound water, but equally it can react with chlorine to form the compound hydrogen chloride. In both reactions the free element hydrogen is converted to a compound of hydrogen and another non-metal, and so both were classed as oxidations even though no oxygen was involved in the second case.

$$2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}$$
$$\text{H}_2 + \text{Cl}_2 \rightarrow 2\text{HCl}$$

The reverse reaction, conversion of compounds such as oxides of metals to the elemental metal were called "reduction" reactions, for example, the reduction of copper(II) oxide to copper by heating with charcoal (carbon).

$$2\text{CuO} + \text{C} \rightarrow 2\text{Cu} + \text{CO}_2$$

The gain or loss of oxygen is still a useful way of recognising some oxidation or reduction reactions, but with a knowledge of the structure of atoms, a rather different definition is now more widely used.

Oxidation reactions as a loss of electrons.
Consider the following reaction in which the metal, magnesium, is treated with hydrochloric acid, as discussed in Topic 6. The magnesium dissolves to form Mg\(^{2+}\) ions in solution and hydrogen gas is evolved. The equation given previously was

$$\text{Mg(s)} + 2\text{H}^+(\text{aq}) \rightarrow \text{Mg}^{2+}(\text{aq}) + \text{H}_2(\text{g})$$

Notice that the free element magnesium (Mg) has been converted to the compound magnesium chloride, MgCl\(_2\), which is present in solution as its component ions Mg\(^{2+}\)(aq) and Cl\(^-\)(aq). Evaporating the water would isolate this compound as shown in the following equation.

$$\text{Mg}^{2+}(\text{aq}) + 2\text{Cl}^-(\text{aq}) \rightarrow \text{MgCl}_2(\text{s})$$

This is therefore just like the examples of oxidation given above where elements were converted to compounds. However, when the reaction equation is written in this way the electronic nature of the change is more apparent. The electrically neutral Mg atoms are converted to the charged Mg\(^{2+}\) cations. For this to occur, each Mg atom has lost 2 electrons according to the following HALF EQUATION:

$$\text{Mg(s)} \rightarrow \text{Mg}^{2+}(\text{aq}) + 2\text{e}^- \ldots \ldots \ldots \ldots (1) \quad \text{Oxidation}$$

At the same time, the H\(^+\) ions have gained 1 electron per ion to form hydrogen atoms which have become H\(_2\) molecules according to the following half equation.
OXIDATION IS THE LOSS OF ELECTRONS
REDUCTION IS THE GAIN OF ELECTRONS

The species which causes the oxidation to occur (H\(^+\) in the above example) is called the **OXIDIZING AGENT** or the **OXIDANT**, while the species which is oxidized is called the **REDUCTING AGENT** or **REDUCTANT**. Equations written in the manner of (1) and (2) above are called **ION-ELECTRON HALF EQUATIONS**.

The following are all examples of redox reactions.

\[
\begin{align*}
Zn(s) + 2H^+(aq) &\rightarrow Zn^{2+}(aq) + H_2(g) \\
2Na(s) + Br_2(l) &\rightarrow 2NaBr(s) \\
2Fe(s) + 3Cl_2(g) &\rightarrow 2FeCl_3(s) \\
2HgO(s) + \text{heat} &\rightarrow 2Hg(l) + O_2(g) \\
S(s) + O_2(g) &\rightarrow SO_2(g)
\end{align*}
\]

In each example, free elements were converted to compounds and/or elements combined in compounds were converted back to the free state.
Check your understanding of this section.
Why is the combination of magnesium with either oxygen or chlorine regarded as the same type of reaction?
Define “oxidation” and “reduction” in terms of electron transfer.
Define the terms oxidant, reductant, oxidizing agent, reducing agent, ion-electron half equation.
List some reduction reactions that are vital to our industrialised world.
Why must an oxidation reaction be accompanied by a reduction reaction?
What factor determines the stoichiometric ratio of reductant and oxidant in a balanced redox equation?
Could the conversion of one compound into another compound be a redox reaction? This proposition is answered in the following section.

Now consider the following reaction:
\[5\text{Fe}^{2+}(aq) + \text{MnO}_4^- + 8\text{H}^+(aq) \rightarrow 5\text{Fe}^{3+}(aq) + \text{Mn}^{2+}(aq) + 4\text{H}_2\text{O}(l) \] (3)
No free element has either been formed from or converted to a compound but the Fe\(^{2+}\) ion has obviously lost 1 electron to produce the Fe\(^{3+}\) ion. From the above definition of oxidation, this means that Fe\(^{2+}\) has been oxidised. We therefore need a method of recognising redox reactions which includes this situation where there are no free elements on either side of the equation.

The concept of oxidation number.
In the above example, the half equation for the reaction involving iron is
\[\text{Fe}^{2+}(aq) \rightarrow \text{Fe}^{3+}(aq) + e^- \]
As electrons appear on the right hand side, this is clearly an oxidation. Since all oxidations are necessarily accompanied by a reduction, then which is the species reduced? The answer is not readily apparent because manganese is present on the left as part of the polyatomic ion MnO\(_4^-\) and on the right as the simple Mn\(^{2+}\) cation. Likewise, hydrogen is present on the left as the cation H\(^+\) and on the right as part of the compound H\(_2\)O. There are no uncombined elements on either side to act as a guide. A clue is provided by noting that the Mn atom in the MnO\(_4^-\) ion has lost oxygen atoms in the reaction, leaving it as the Mn\(^{2+}\) ion - an indication of a reduction reaction. However, by assigning a quantity known as the **OXIDATION NUMBER** (or **OXIDATION STATE**) to each atom in the equation and observing which atoms change their oxidation numbers during the reaction, the species oxidised and reduced can be established unequivocally. Oxidation number is the **notional charge** that an atom would bear if all electrons in each bond to it were assigned to the more electronegative atom. Oxidation numbers are not ionic charges and, to avoid confusion, should always be written in Roman numerals with a + or – sign as a prefix. This also serves to distinguish oxidation numbers from valence states which have no sign.
The rules for assigning oxidation numbers are given in the table on page XI-5.

Using these rules we now return to the reaction (3) above and assign an oxidation number to each atom.

\[
\begin{align*}
\text{II} & \quad \text{VII} & \quad \text{II} & \quad \text{I} & \quad \text{III} & \quad \text{II} & \quad \text{I} & \quad \text{II} \\
5\text{Fe}^{2+}(aq) & + \text{MnO}_4^-(aq) + 8\text{H}^+(aq) \rightarrow 5\text{Fe}^{3+}(aq) + \text{Mn}^{2+}(aq) + 4\text{H}_2\text{O}(l)
\end{align*}
\]

Starting with \(\text{Fe}^{2+}\) which we already know to be oxidised, note that its oxidation number has increased from +II to +III. Thus another definition of oxidation is:

A SPECIES IS OXIDISED IF ITS OXIDATION NUMBER INCREASES IN A REACTION.

Examination of all the other oxidation numbers shows that the only other species to change its oxidation number during the reaction is Mn from +VII in \(\text{MnO}_4^-\) to +II in \(\text{Mn}^{2+}\). This is a decrease in oxidation number. As a species on the left must have been reduced, this suggests that when reduction occurs, the oxidation number of that species decreases. To check this, return to the half-reaction (2) which has already been designated as a reduction,

\[
2\text{H}^+(aq) + 2e^- \rightarrow \text{H}_2(g)
\]

It can be seen that the oxidation number of H changes from +I to 0, i.e. a decrease occurs. This confirms that a reduction can be defined in terms of oxidation number change as:

A SPECIES IS REDUCED IF ITS OXIDATION NUMBER DECREASES IN A REACTION.

In reaction (3) above then, Mn in the \(\text{MnO}_4^-\) ion is the species reduced following its change in oxidation number from +VII to +II.

As another example, consider the reaction given previously -

\[
\text{S} + \text{O}_2 \rightarrow \text{SO}_2
\]

The oxidation numbers of both S and O on the left are zero because they are elements. In the compound \(\text{SO}_2\), the oxidation number of O is −II (Rule 4). Then the oxidation number of the S atom in \(\text{SO}_2\) must be +IV in order that the sum of the oxidation numbers in the compound adds up to zero (Rule 5). Therefore, S is the species oxidised (O.N. increases from zero to +IV) and O is the species reduced (O.N. decreases from zero to −II).
Rules for assigning oxidation numbers.

1. The oxidation number of a simple cation is the same as the cationic charge.

 e.g. Na\(^{+}\) O.N. = +I; Mg\(^{2+}\) O.N. = +II; Al\(^{3+}\) O.N. = +III
 Use was made of this in earlier Topics to name unambiguously cations such as those of copper which could be Cu\(^{2+}\) or Cu\(^{+}\) and in one system of naming covalent compounds.

2. The oxidation number of a simple anion is the same as the anionic charge.

 e.g. O\(^{2-}\) O.N. = -II; Cl\(^{-}\) O.N. = -I; N\(^{3-}\) O.N. = -III

3. The oxidation number of atoms in an element = zero.

4. In all compounds except peroxides and OF\(_2\), oxygen has the oxidation number -II, and H in most compounds has oxidation number = +I.

5. The sum of all the oxidation numbers in a polyatomic ion must equal the charge on the ion, or in a compound, must add up to zero.

 e.g. in MnO\(_4^{-}\), the sum of all oxidation numbers is \((4 \times -II) + Z = -1\) where Z is the oxidation number of Mn. Thus Z = +VII.
 or, in the molecule CO\(_2\), \(Y + (2 \times -II) = 0\), where Y stands for the oxidation number of carbon in the compound CO\(_2\).
 Thus Y = +IV.
 Note that this does not imply that a C\(^{4+}\) ion is present in carbon dioxide - the carbon/oxygen bonds are in fact covalent.

Writing redox equations using ion-electron half equations.

The following procedure should be followed in writing redox equations using the ion-electron half equation method.

1. Set out the skeleton half equations for the oxidation and the reduction.
2. Balance the atoms on both sides of each half equation.
3. Then, balance the charge on both sides of each half equation by adding electrons as required.
4. Finally, combine the oxidation and reduction half equations in the ratio which will cancel out the electrons from each side.

Example:
\[\text{Na} \rightarrow \text{Na}^{+} + e^{-} \quad \text{oxidation reaction} \]
\[\text{Cl}_2 + 2e^{-} \rightarrow 2\text{Cl}^{-} \quad \text{reduction reaction} \]
\[2\text{Na} + \text{Cl}_2 \rightarrow 2\text{Na}^{+} + 2\text{Cl}^{-} \quad \text{overall redox reaction} \]
Redox reactions in biological systems.

All living cells rely on redox reactions to supply the energy needed for them to remain viable and to reproduce. In the beginning on earth, there was no elemental oxygen in the atmosphere but much carbon dioxide. Thus the redox reactions utilised in respiration and photosynthesis that underlie most living systems now were not then available. Instead the first living cells used redox reactions involving elemental sulfur and hydrogen sulfide which contains the reduced form of sulfur and the oxidation of H_2S to S provided the reduction half reaction of redox reactions that provided cellular energy. This type of cell redox reaction still operates in species that inhabit anaerobic environments such as swamps and deep sea vents. About 3.4 billion years ago the evolution of photosynthetic bacteria which use sunlight to convert carbon dioxide from the atmosphere and water to carbohydrates and oxygen gas lead to the greatest atmospheric pollution to ever occur on earth and now O_2 gas constitutes about 20% of the atmosphere. As oxygen concentrations in the atmosphere rose, so the anaerobic organisms that started life on earth died out, replaced by organisms that could use the redox reactions involving elemental oxygen and water which contains its reduced form.

[Remember that the reduction of a species in a half reaction causes the oxidation of a species in the other half reaction - oxidants such as S and O_2 are necessarily reduced to H_2S and H_2O in that process.]

When organisms use the redox reaction in which elemental oxygen is converted to carbon dioxide as the oxidant in the cell’s redox reactions, the process is known as respiration and does not utilise light.

In respiration, carbohydrates such as glucose are oxidised to carbon dioxide and water with the evolution of energy. This process necessarily occurs via many small steps because (a) releasing all the energy in one step would destroy the cell by heating and (b) the process is much more efficient when done in small steps which also produce many intermediates required for cell metabolic processes.

The process of photosynthesis can be represented by the overall equation in which the O atom in water is oxidised to O_2 gas while the C atom in CO_2 is reduced

$$6CO_2 + 6H_2O + \text{light} \rightarrow C_6H_{12}O_6 + 6O_2$$

while respiration can be represented by the overall equation in which O_2 is reduced to CO_2

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

where $C_6H_{12}O_6$ represents a carbohydrate such as glucose.

However, note again that these equations are simply summarising a number of intermediate steps involving many components not shown in the equations. Respiration is in effect the reverse of photosynthesis but no light is involved.

Location of oxidants and reductants in the Periodic Table.

From the definition of oxidation as a loss of electrons, it is apparent that elements which have few electrons more than a noble gas in their outer levels will be the most easily oxidised - i.e. metals. Consequently, Group I elements are the easiest to oxidise as they have only 1 electron more than a noble gas structure and therefore the least amount of energy is required to remove that electron. Group II and Group III elements are also mostly easy to oxidise. These elements are therefore good reducing agents, as electrons can be removed from their outer levels with only a relatively small input of energy required. In contrast, elements in Group VII are very close to attaining the inert gas electron structure, requiring only the gain of 1
electron per atom. Thus the halogens are easily reduced and are therefore strong oxidizing agents as is also the element oxygen from Group VI where the gain of just 2 electrons allows the noble gas electron structure to be achieved. As a generalisation, the elements most easily oxidised are located on the left hand side of the Periodic Table while those most easily reduced (and therefore the strongest oxidants) are on the right hand side, excluding the noble gases.

Objectives of this Topic.
When you have completed this Topic, including the tutorial questions, you should have achieved the following goals:

1. Recognise oxidation reactions as:
 (i) a free element converted to a compound, particularly by combination with oxygen and other non-metals.
 (ii) a species losing electrons,
 (iii) a species increasing its oxidation number.

2. Recognise reduction reactions in similar terms.

3. Be able to use ion electron half equations to balance simple redox equations.

4. Be able to deduce the oxidation number of any atom in a reaction.

5. Know the meaning of the terms oxidation; reduction; oxidant; oxidising agent; reductant; reducing agent.

6. Be aware of the location in the Periodic Table of the elements which are the easiest to oxidise and to reduce.

SUMMARY
Historically, early chemists observed that most elements combined with oxygen to form compounds and this type of reaction was called an oxidation. Later it was realised that other reactive non-metals such as the halogens enter into similar reactions but the same term was still applied. When the electronic nature of atoms was discovered, it was realised that the real basis for oxidation reactions was the transfer of electrons from the atom being oxidised to another atom, the latter being said to be reduced. As electrons must balance in reactions, it is fundamental that electrons lost by the species oxidised must be gained by the species being reduced and one cannot proceed without the other occurring simultaneously. The term redox reaction is used to reinforce this fact. Whenever an element is converted to a compound or vice-versa, the reaction is necessarily a redox reaction. The terms oxidising agent or oxidant are used to describe the species which causes another to be oxidised and is itself reduced in that process. Similarly, the terms reducing agent or reductant are applied to the species which is oxidised.

However, many redox reactions only take place between compounds and no free elements are involved, the requirement that electrons be transferred being met without any free elements being consumed or produced. In order to allow such reactions to be easily identified as redox, an artificial method of bookkeeping of electrons in the atoms involved has been devised, called the oxidation number. This is a number which is assigned to each atom according to a set of rules. An
atom undergoing an oxidation will experience an increase in its oxidation number while an atom being reduced will have its oxidation number decreased. Oxidation number is not the actual charge on an atom nor is it the valency of that atom. To distinguish oxidation numbers from charge or valency, Roman numerals should be used for all oxidation numbers.

Thus there are several methods of recognising a redox reaction:
(i) as free elements and compounds being interconverted and especially where atoms of non-metals such as oxygen are gained or lost in that interconversion.
(ii) as species gaining/losing electrons
(iii) as species changing oxidation number.

Elements that are the most easily oxidised (good reducing agents) are the metals from the first few families as these require relatively little energy for the removal of their outer level electrons. Conversely, the elements that are the best oxidising agents come from the families that are only a few electrons short of the noble gas electron structure, particularly elements such as oxygen and the halogens.

TUTORIAL QUESTIONS - TOPIC 11.

1. Explain the following terms: oxidation half equation; reduction half equation; oxidizing agent; oxidant; reducing agent; reductant.

2. Give three definitions of "oxidation" and three definitions of "reduction". Illustrate each with an example.

3. Give the oxidation number of the underlined atom in each of the following:

 (i) \(K^+\) \hspace{1cm} (ii) \(\text{Al}\) \hspace{1cm} (iii) \(\text{SO}_4^{2-}\) \hspace{1cm} (iv) \(\text{FeSO}_4\)

 (v) \(\text{N}_2\) \hspace{1cm} (vi) \(\text{NaCl}\) \hspace{1cm} (vii) \(\text{Na}_2\text{SO}_4\) \hspace{1cm} (viii) \(\text{Na}_2\text{PO}_4\)

 (ix) \(\text{Na}_2\text{CO}_3\) \hspace{1cm} (x) \(\text{MgO}\) \hspace{1cm} (xi) \(\text{MgCl}_2\) \hspace{1cm} (xii) \(\text{NH}_3\)

 (xiii) \(\text{NO}_3^-\) \hspace{1cm} (xiv) \(\text{N}^{3-}\) \hspace{1cm} (xv) \(\text{CuO}\) \hspace{1cm} (xvi) \(\text{Cu}_2\text{O}\)

 (xvii) \(\text{Fe}_2\text{O}_3\) \hspace{1cm} (xviii) \(\text{Cr}_2\text{O}_7^{2-}\) \hspace{1cm} (xix) \(\text{Bi}^{3+}\) \hspace{1cm} (xx) \(\text{CO}_2\)
4. Using the ion electron half equation method, balance the following redox equations.
 (i) $\text{Fe}^{3+} + \text{I}^- \rightarrow \text{Fe}^{2+} + \text{I}_2$
 (ii) $\text{Sn}^{2+} + \text{Fe}^{3+} \rightarrow \text{Sn}^{4+} + \text{Fe}^{2+}$
 (iii) $\text{Cu} + \text{Ag}^+ \rightarrow \text{Cu}^{2+} + \text{Ag}$
 (iv) $\text{H}^+ + \text{Al} \rightarrow \text{H}_2 + \text{Al}^{3+}$
 (v) $\text{H}_2\text{S} + \text{Fe}^{3+} \rightarrow \text{H}^+ + \text{S} + \text{Fe}^{2+}$

5. Give the oxidation number of the underlined atom in each of the following species:
 NiO Na_2S MnO_4^- K_2CrO_4 HNO_3
 NO_2 SO_3 H_3PO_4 H_2 ClO_4^-

6. Indicate which of the following equations represent redox reactions by writing "redox" after the equation. Where the reaction is redox, give the atom oxidised, the atom reduced and their oxidation numbers.
 (a) $\text{Ag}^+ + \text{Cl}^- \rightarrow \text{AgCl}(s)$
 (b) $\text{CaCO}_3(s) + 2\text{H}^+ \rightarrow \text{Ca}^{2+} + \text{CO}_2(g) + \text{H}_2\text{O}$
 (c) $\text{Mg}(s) + 2\text{H}^+ \rightarrow \text{Mg}^{2+} + \text{H}_2(g)$
 (d) $\text{MgO}(s) + 2\text{H}^+ \rightarrow \text{Mg}^{2+} + \text{H}_2\text{O}$
 (e) $\text{Cu}(s) + \text{S}(s) \rightarrow \text{CuS}(s)$

7. The mnemonic OILRIG is often quoted as a means of remembering what happens to electrons in oxidation and reduction reactions. What would this mnemonic be when expanded?

8. Sulfur dioxide reacts with water to form sulfite ion. Is this a redox reaction? Justify your answer.
9. Identify in which of the following species sulfur is in
 (i) its lowest oxidation state
 (ii) its highest oxidation state:
 \(\text{SO}_4^{2-}, \text{SO}_3^{2-}, \text{S}(s), \text{SO}_2, \text{H}_2\text{S} \)

10. Identify in which of the following species nitrogen is in
 (i) its lowest oxidation state
 (ii) its highest oxidation state:
 \(\text{NO}_2, \text{NO}, \text{HNO}_3, \text{N}_2, \text{HNO}_2, \text{N}_2\text{O}, \text{Na}_3\text{N} \)

11. In each of the following balanced redox equations, identify:
 (i) the atom oxidised and its product with their oxidation numbers
 (ii) the atom reduced and its product with their oxidation numbers.
 (iii) the reducing agent
 (iv) the oxidising agent

 (a) \(\text{MnO}_2 + 4\text{H}^+ + 2\text{Cl}^- \rightarrow \text{Mn}^{2+} + \text{Cl}_2 + 2\text{H}_2\text{O} \)
 (b) \(3\text{SO}_2 + 2\text{NO}_3^- + 2\text{H}_2\text{O} \rightarrow 3\text{SO}_4^{2-} + 2\text{NO} + 4\text{H}^+ \)
 (c) \(2\text{Ag} + \text{H}_2\text{S} \rightarrow \text{Ag}_2\text{S} + \text{H}_2 \)
 (d) \(\text{H}_2\text{S} + 2\text{NO}_3^- + 2\text{H}^+ \rightarrow \text{S} + 2\text{NO}_2 + 2\text{H}_2\text{O} \)
 (e) \(5\text{Fe}^{2+} + \text{MnO}_4^- + 8\text{H}^+ \rightarrow 5\text{Fe}^{3+} + \text{Mn}^{2+} + 4\text{H}_2\text{O} \)
 (f) \(6\text{Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ \rightarrow 6\text{Fe}^{3+} + 2\text{Cr}^{3+} + 7\text{H}_2\text{O} \)
 (g) \(\text{Cl}_2 + 2\text{Br}^- \rightarrow 2\text{Cl}^- + \text{Br}_2 \)
 (h) \(\text{CuO} + \text{H}_2 \rightarrow \text{Cu} + \text{H}_2\text{O} \)
 (i) \(\text{H}_3\text{AsO}_4 + \text{Sn}^{2+} + 2\text{H}^+ \rightarrow \text{H}_3\text{AsO}_3 + \text{Sn}^{4+} + \text{H}_2\text{O} \)
 (j) \(\text{Pb} + \text{PbO}_2 + 4\text{H}^+ \rightarrow 2\text{Pb}^{2+} + 2\text{H}_2\text{O} \)

12. Self Help Problems Module “Complexes and Redox Reactions” Q 3
ANSWERS TO TUTORIAL TOPIC 11

1. Oxidation half equation: An equation showing only the oxidation part of a redox reaction, balanced with respect to both atoms and charge. The charge balance is achieved by adding the required number of electrons to the right hand side of the equation.

Reduction half equation: An equation showing only the reduction part of a redox reaction, balanced with respect to both atoms and charge. The charge balance is achieved by adding the required number of electrons to the left hand side of the equation.

Oxidizing agents are any species that cause oxidation and thus are themselves reduced - e.g. the oxidizing agent O_2 is reduced to O^{2-} when it oxidises a metal such as Zn to Zn^{2+}.

Oxidant: Another name for an oxidizing agent - oxidants cause an oxidation to occur and are themselves reduced in the redox reaction.

Reducing agents are any species that cause reduction and thus are themselves oxidized - e.g. the reducing agent H_2S is oxidized to S when it reduces Fe^{3+} to Fe^{2+}.

Reductant: Another name for a reducing agent - reductants cause a reduction to occur and are themselves oxidized in the redox reaction.

2. Oxidation of a species occurs when:
 (i) it gains oxygen atoms e.g. $2Mg + O_2 \rightarrow 2MgO$
 (ii) it loses electrons e.g. $Mg \rightarrow Mg^{2+} + 2e^-$
 (iii) its oxidation number increases.

 e.g. the oxidation number of Mg in both (i) and (ii) increases from zero on the LHS to +II on the RHS.

Reduction of a species occurs when:
 (i) it loses oxygen atoms e.g. $CuO + H_2 \rightarrow Cu + H_2O$
 (ii) it gains electrons e.g. $Cu^{2+} + 2e^- \rightarrow Cu$
 (iii) its oxidation number decreases.

 e.g. the oxidation number of Cu in both (i) and (ii) decreases from +II on the LHS to zero on the RHS.

3. (i) +I The O.N. of a simple cation = the charge on that cation.
 (ii) 0 The O.N. of an element = zero.
 (iii) +VI The sum of the O.N. of all the atoms = charge on the ion = −II.
 The sum of the O.N. of the four O atoms = $4 \times −II = −VIII$.
 ∴ O.N. of the S atom = +VI.
(iv) +II The Fe in this compound must be Fe\(^{2+}\) ion to balance the SO\(_4\)\(^{2-}\) ionic charge, so its O.N. = +II.

(v) 0 The O.N. of an element = zero.

(vi) +I The Na in this compound must be Na\(^+\) to balance the Cl\(^-\) ionic charge, so its O.N. = +I [Na, like all Group I elements, only has the +I oxidation state.]

(vii) +I The Na in this compound must be Na\(^+\) to balance the SO\(_4\)\(^{2-}\) ionic charge, so its O.N. = +I.

(viii) +V The PO\(_4\)\(^{3-}\) ionic charge = sum of the O.N. of the P and the four O atoms. The O.N. of each O atom = –II, so O.N. of the P atom = +V.

(ix) +IV The CO\(_3\)\(^{2-}\) ionic charge = sum of the O.N. of the C and the three O atoms. The O.N. of each O atom = –II, so O.N. of the C atom = +IV.

(x) +II The Mg in this compound must be Mg\(^{2+}\) to balance the O\(^{2-}\) ionic charge, so its O.N. = +II.

(xi) +II The Mg in this compound must be Mg\(^{2+}\) to balance the two Cl\(^-\) ionic charges, so its O.N. = +II. [Mg like the other Group II elements only has the +II oxidation state.]

(xii) –III Hydrogen normally has the +I oxidation state except in ionic hydrides. The sum of the O.N. of the atoms = zero, so the N atom must have O.N. = –III.

(xiii) +V The sum of the O.N. of the atoms = –I and the O atoms each have O.N. = –II so the O.N. of the N atom = +V.

(xiv) –III The O.N. of a simple anion = charge on that anion = –III

(xv) +II The Cu in this compound must be Cu\(^{2+}\) to balance the O\(^{2-}\) ionic charge, so its O.N. = +II.

(xvi) +I The Cu in this compound must be Cu\(^+\) to balance the O\(^{2-}\) ionic charge, so its O.N. = +I.

(xvii) +III The Fe in this compound must be Fe\(^{3+}\) to balance the total O\(^{2-}\) ionic charge, so its O.N. = +III.

(xviii) +VI The Cr\(_2\)O\(_7\)\(^{2-}\) ionic charge = sum of the O.N. of the two Cr atoms and the seven O atoms. The O.N. of each O atom = –II, so O.N. of each Cr atom = +VI.
(xix) +III The O.N. of a simple cation = charge on that cation = +III.
(xx) +IV The sum of the O.N. of the C and the two O atoms = zero and the O.N. of each O atom = –II so O.N. of the C atom = +IV.

4. (i) \[\text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \] (redox)
\[2\text{I}^- \rightarrow \text{I}_2 + 2e^- \] (oxidation)
\[2\text{Fe}^{3+} + 2\text{I}^- \rightarrow 2\text{Fe}^{2+} + \text{I}_2 \]

(ii) \[\text{Sn}^{2+} \rightarrow \text{Sn}^{4+} + 2e^- \] (oxidation)
\[\text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \] (reduction)
\[\text{Sn}^{2+} + 2\text{Fe}^{3+} \rightarrow \text{Sn}^{4+} + 2\text{Fe}^{2+} \]

(iii) \[\text{Ag}^+ + e^- \rightarrow \text{Ag} \] (reduction)
\[\text{Cu} \rightarrow \text{Cu}^{2+} + 2e^- \] (oxidation)
\[\text{Cu} + 2\text{Ag}^+ \rightarrow \text{Cu}^{2+} + 2\text{Ag} \]

(iv) \[2\text{H}^+ + 2e^- \rightarrow \text{H}_2 \] (reduction)
\[\text{Al} \rightarrow \text{Al}^{3+} + 3e^- \] (oxidation)
\[6\text{H}^+ + 2\text{Al} \rightarrow 3\text{H}_2 + 2\text{Al}^{3+} \]

(v) \[\text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \] (reduction)
\[\text{H}_2\text{S} \rightarrow \text{S} + 2\text{H}^+ + 2e^- \] (oxidation)
\[\text{H}_2\text{S} + 2\text{Fe}^{3+} \rightarrow 2\text{H}^+ + \text{S} + 2\text{Fe}^{2+} \]

5. \(\text{NiO} \quad +II \) Ni is present as the \(\text{Ni}^{2+} \) ion
\(\text{Na}_2\text{S} \quad -II \) S is present as the \(\text{S}^{2-} \) ion

\(\text{MnO}_4^- \quad +VII \) The sum of the O.N. of the Mn atom and the four O atoms = charge on the ion = –I. Given each O atom has O.N. = –II, then the Mn atom has O.N. = +VII

\(\text{K}_2\text{CrO}_4 \quad +VI \) The chromate ion has the formula \(\text{CrO}_4^{2-} \). The sum of the O.N. of the Cr atom and the four O atoms = charge on the ion = –II. Given each O atom has O.N. = –II, then the Cr atom has O.N. = +VI.
HNO₃ +V The nitrate ion has the formula NO₃⁻. The sum of the O.N. of the N atom and the three O atoms = charge on the ion = –I. Given each O atom has O.N. = –II, then the N atom has O.N. = +V.

NO₂ +IV The sum of the O.N. of the N and the two O atoms = zero. As the O.N. of each O atom = –II, then the O.N. of the N atom = +IV.

SO₃ +VI The sum of the O.N. of the S and the three O atoms = zero. As the O.N. of each O atom = –II, then the O.N. of the S atom = +VI.

H₃PO₄ +V The phosphate ion has the formula PO₄³⁻. The sum of the O.N. of the P atom and the four O atoms = charge on the ion = –III. Given each O atom has O.N. = –II, then the P atom has O.N. = +V.

H₂ 0 All elements have O.N. = zero.

ClO₄⁻ +VII The sum of the O.N. of the Cl atom and the four O atoms = charge on the ion = –I. Given each O atom has O.N. = –II, then the Cl atom has O.N. = +VII.

6. (a) not redox (no atom changes its oxidation state).
(b) not redox (no atom changes its oxidation state).
(c) redox reaction
Mg, the element (O.N. = 0) is oxidised to Mg²⁺ which has O.N. = +II. The H⁺ ion (O.N. = +I) is reduced to the element, H₂, which has O.N. = 0.
(d) not redox (no atom changes its oxidation state).
(e) redox reaction.
Cu is oxidised from O.N. = 0 in the element to O.N. = +II in CuS.
S is reduced from O.N. = 0 in the element to O.N. = –II in CuS.

7. Oxidation Is Loss Reduction Is Gain (of electrons) OILRIG

8. The oxidation number of S in both SO₂ and SO₃²⁻ is +IV. Oxygen atoms in both species all have O.N. = –II. As there has been no change in the oxidation number of any atom, this is not a redox reaction.

9. The oxidation state (oxidation number) of S in these species is SO₄²⁻ (+VI) SO₃²⁻ (+IV) S(s) (0) SO₂ (+IV) H₂S (–II)
(derived using the O.N. of O atoms = –II and H atoms = +I).
Thus S has its highest oxidation number in SO₄²⁻ and its lowest in H₂S.

10. The oxidation state (oxidation number) of N in these species is NO₂ (+IV) NO (+II) HNO₃ (+V) N₂ (0)
Thus N has its highest oxidation number in HNO$_3$ and its lowest in Na$_3$N.

11. (a) Reducing agent: Cl$^-$ Oxidizing agent: MnO$_2$
Atom oxidized: Cl as Cl$^-$ (O.N. = -I) to Cl in Cl$_2$ (O.N. = 0).
Atom reduced: Mn in MnO$_2$ (O.N. = +IV) to Mn as Mn$^{2+}$ (O.N. = +II).

(b) Reducing agent: SO$_2$ Oxidizing agent: NO$_3^-$
Atom oxidized: S in SO$_2$ (O.N. = +IV) to S in SO$_4^{2-}$ (O.N. = +VI).
Atom reduced: N in NO$_3^-$ (O.N. = +V) to N in NO (O.N. = +II).

(c) Reducing agent: Ag Oxidizing agent: H$_2$S
Atom oxidized: Ag as the element (O.N. = 0) to Ag$^+$ in Ag$_2$S (O.N. = +I).
Atom reduced: H in H$_2$S (O.N. = +I) to H in H$_2$ (O.N. = 0).

(d) Reducing agent: H$_2$S Oxidizing agent: NO$_3^-$
Atom oxidized: S in H$_2$S (O.N. = -II) to S as the element (O.N. = 0).
Atom reduced: N in NO$_3^-$ (O.N. = +V) to N in NO$_2$ (O.N. = +IV).

(e) Reducing agent: Fe$^{2+}$ Oxidizing agent: MnO$_4^-$
Atom oxidized: Fe as Fe$^{2+}$ (O.N. = +II) to Fe as Fe$^{3+}$ (O.N. = +III).
Atom reduced: Mn in MnO$_4^-$ (O.N. = +VII) to Mn as Mn$^{2+}$ (O.N. = +II).

(f) Reducing agent: Fe$^{2+}$ Oxidizing agent: Cr$_2$O$_7^{2-}$
Atom oxidized: Fe as Fe$^{2+}$ (O.N. = +II) to Fe as Fe$^{3+}$ (O.N. = +III).
Atom reduced: Cr in Cr$_2$O$_7^{2-}$ (O.N. = +VI) to Cr as Cr$^{3+}$ (O.N. = +III).

(g) Reducing agent: Br$^-$ Oxidizing agent: Cl$_2$
Atom oxidized: Br as Br$^-$ (O.N. = -I) to Br as the element Br$_2$ (O.N. = 0).
Atom reduced: Cl as the element Cl$_2$ (O.N. = 0) to Cl as Cl$^-$ (O.N. = -I).

(h) Reducing agent: H$_2$ Oxidizing agent: CuO
Atom oxidized: H as the element H$_2$ (O.N. = 0) to H in H$_2$O (O.N. = +I).
Atom reduced: Cu in CuO (O.N. = +II) to Cu as the element (O.N. = 0).

(i) Reducing agent: Sn$^{2+}$ Oxidizing agent: H$_3$AsO$_4$
Atom oxidized: Sn as Sn$^{2+}$ (O.N. = +II) to Sn as Sn$^{4+}$ (O.N. = +IV).
Atom reduced: As in H$_3$AsO$_4$ (O.N. = +V) to As in H$_3$AsO$_4$ (O.N. = +III).

(j) Reducing agent: Pb Oxidizing agent: PbO$_2$
Atom oxidized: Pb as the element (O.N. = 0) to Pb as Pb$^{2+}$ (O.N. = +II).
Atom reduced: Pb in PbO$_2$ (O.N. = +IV) to Pb$^{2+}$ (O.N. = +II).
(This example shows that two different oxidation states of the same element can lead to both oxidation and reduction of the one type of atom; this reaction is the basis for the lead acid battery).