Multiple Choice Questions #7

In answering questions 1 - 2, consider the following titration curve.

1. Which one of the following combinations does the titration curve represent?
 A Addition of a strong base to a weak acid
 B Addition of a weak base to a strong acid
 C Addition of a weak acid to a strong base
 D Addition of a strong acid to a strong base
 E Addition of a strong acid to a weak base

2. What is the value of the pK_a that can be obtained from this titration curve?
 A 11.3 B 10.0 C 9.3 D 5.3 E 1.8

3. Arrange the given acids in order of DECREASING acid strength. Relevant pK_a values are given where appropriate.
 acetic acid, CH$_3$COOH $pK_a = 4.76$, carbonic acid, H$_2$CO$_3$ $pK_{a1} = 6.35$
 hydrofluoric acid, HF $pK_a = 3.17$, nitrous acid, HNO$_2$ $pK_a = 3.15$

 A H$_2$CO$_3 >$ CH$_3$COOH $>$ HF $>$ HNO$_2 >$ HNO$_3$
 B HNO$_3 >$ HNO$_2 >$ HF $>$ CH$_3$COOH $>$ H$_2$CO$_3$
 C CH$_3$COOH $>$ H$_2$CO$_3$ $>$ HF $>$ HNO$_3 >$ HNO$_2$
 D HNO$_3 >$ H$_2$CO$_3 >$ CH$_3$COOH $>$ HF $>$ HNO$_2$
 E HNO$_2 >$ HF $>$ CH$_3$COOH $>$ H$_2$CO$_3 >$ HNO$_3$
4. Which of the following gases can be liquefied at 25 °C?

<table>
<thead>
<tr>
<th>Gas</th>
<th>Critical point</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃Cl</td>
<td>144 °C, 66 atm</td>
</tr>
<tr>
<td>SO₂</td>
<td>158 °C, 78 atm</td>
</tr>
<tr>
<td>CH₄</td>
<td>-82 °C, 46 atm</td>
</tr>
</tbody>
</table>

A SO₂ only
B CH₄ only
C CH₃Cl and SO₂
D all of them
E none of them

5. Which one of the following is a coordination isomer of the complex salt, \(\text{trans-}[\text{Cr(H₂O)}₄\text{Cl₂}]\text{Br}\)?

A \(\text{cis-}[\text{Cr(H₂O)}₄\text{Cl₂}]\text{Br}\)
B \(\text{trans-}[\text{Cr(H₂O)}₄\text{BrCl}]\text{Cl}\)
C \(\text{trans-}[\text{Cr(H₂O)}₄\text{Br₂}]\text{Cl}\)
D \(\text{trans-}[\text{CrBr₂(H₂O)}₄]\text{Cl}\)
E \(\text{trans-}[\text{CrCl₂(H₂O)}₄]\text{Br}\)

6. How many isomers are possible for the complex ion \([\text{Ni(en)}₃]^{2+}\) (en = NH₂CH₂CH₂NH₂)?

A 1
B 2
C 3
D 4
E 5

7. How many isomers are possible for the complex ion \([\text{Ni(en)}₂\text{I₂}]\) (en = NH₂CH₂CH₂NH₂)?

A 1
B 2
C 3
D 4
E 5

8. How many isomers are possible for the complex \(\text{PtCl₂en}\) (en = NH₂CH₂CH₂NH₂)?

A 1
B 2
C 3
D 4
E 5