- \(\text{C}_2 \) is a reaction intermediate observed in flames, comets and circumstellar shells.

How many valence electrons are there in \(\text{C}_2 \)?

Complete the calculated MO diagram for the ground state of \(\text{C}_2 \) by inserting the appropriate number of valence electrons into the appropriate orbitals.

What is the bond order of \(\text{C}_2 \)?

What is the longest wavelength of light that the ground state \(\text{C}_2^+ \) ion will absorb? Show working.

Answer:
• The following relate to the electronic structure of the O_2^+ molecular ion.

How many valence electrons are there in O_2^+?

Complete the MO diagram for the ground state electronic configuration of O_2^+ by inserting an arrow to represent each valence electron.

What is the bond order of O_2^+?

Do you expect O_2^+ to be paramagnetic? Explain your answer.

• Sketch the following wave functions as lobe representations.

(a) a $2p$ atomic orbital

(b) a σ^* molecular orbital