Topics in the June 2009 Exam Paper for CHEM1102

Click on the links for resources on each topic.

2009-J-2:

- Periodic Trends in Aqueous Oxide
- Coordination Chemistry

2009-J-3:

- Strong Acids and Bases
- Kinetics Catalysis
- Physical States and Phase Diagrams
- Crystal Structures

2009-J-4:

• Coordination Chemistry

2009-J-5:

- Weak Acids and Bases
- Calculations Involving pKa

2009-J-6:

Kinetics

2009-J-7:

• Stereochemistry

2009-J-8:

- Alkenes
- Alcohols
- Organic Halogen Compounds
- Carboxylic Acids and Derivatives

2009-J-9:

Carboxylic Acids and Derivatives

2009-J-10:

• Stereochemistry

2009-J-12:

Alkenes

2009-J-13:

Synthetic Strategies

2

Explain in terms of their electronic configurations and ionisation energies why the halogens (Group 17) are powerful *oxidising* agents.
 Marks 2

Oxidising agents are themselves reduced (*i.e.* they gain electrons).

The electronic configuration of the halogens (Group 17) is np^5 . They are small atoms (atomic size decreases across a period as the nuclear charge increases). In each period, the halogen is the element with the highest number of protons in the nucleus that also has an incomplete shell.

As a result, they will readily gain a single electron to form the X⁻ ion.

Similarly, the high nuclear charge and small size means that they have high ionisation energies. Hence halogens are poor reducing agents.

• Compounds of *d*-block elements are frequently paramagnetic. Using the box notation to represent atomic orbitals, account for this property in compounds of Co^{2+} .

A cobalt atom has 9 valence electrons: it is in Group 9 of the Periodic Table. A Co^{2+} cation has lost 2 electrons so has (9-2) = 7 valence electrons. The configuration of Co^{2+} is $3d^7$. These occupy the five *d*-orbitals to maximize the number of unpaired electrons (to minimize the electron-electron repulsion):

Paramagnetism arises as a result of the presence of 1 or more unpaired electrons. Co²⁺ has 3 unpaired electrons and so is paramagnetic.

Marks

2

• BF₃ is a Lewis acid in its reaction with diethyl ether. Explain what is meant by a Lewis acid and draw the product of this reaction.

• The gas methane, CH₄, has a critical point at -82 °C and 46 atm. Can methane be liquefied at 25 °C? Explain your answer.

The critical temperature (T_c) is the temperature above which a substance cannot exist as a liquid. Thus, methane cannot be liquefied above -82 °C and so cannot be liquefied at 25 °C.

• Define what is meant by an "allotrope". Give an example of a pair of allotropes involving (i) oxygen and (ii) a pair not involving oxygen.

Allotropes are different structural forms of the same element.

(i) Dioxygen, O₂, and ozone, O₃, are allotropes of oxygen.

(ii) Examples include (a) white and red phosphorus, (b) graphite, diamond and fullerene for carbon and (c) rhombic, monoclinic and amorphous sulfur.

2

2

CHEM1102

• Complete the	e following table. (en = e	ethylenediamine = NH_2C	CH ₂ CH ₂ NH ₂)	Marks 9
Formula	K ₂ [CoCl ₄]	Na ₃ [FeBr(CN) ₅]	$[Zn(en)_2(NO_3)_2]$	
Oxidation state of transition metal ion	+2 (II)	+3 (III)	+2 (II)	
Coordination number of transition metal ion	4	6	6 (4 × N from en and 2 × O from NO ₃ ⁻)	
Number of <i>d</i> -electrons in the transition metal ion	7 (Co is in Group 9 so Co ²⁺ has 9 – 2= 7)	5 (Fe is in Group 8 so Fe ³⁺ has 8 – 3 = 5)	10 (Zn is in Group 12 Zn ²⁺ has 12 – 2= 10)	
Charge of the complex ion	2– [CoCl ₄] ²⁻	3– [FeBr(CN) ₅] ³⁻	0 [Zn(en) ₂ (NO ₃) ₂]	
Geometry of the complex ion	tetrahedral	octahedral	octahedral	
List all the ligand donor atoms	4 × Cl	1 × Br and 5 × C	4 × N and 2 × O	

• Solution A consists of a 0.020 M aqueous solution of propionic acid, $C_3H_6O_2$, at 25 °C. Calculate the pH of Solution A. The p K_a of propionic acid is 4.87.

As $C_3H_6O_2$ is a weak acid, $[H^+]$ must be calculated by considering the equilibrium:

	C ₃ H ₆ O ₂	 $C_3H_5O_2$	\mathbf{H}^{+}
initial	0.020	0	0
change	-x	+x	+x
final	0.020 - x	x	x

The equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm C}_3{\rm H}_5{\rm O}_2^{-}][{\rm H}^+]}{[{\rm C}_3{\rm H}_6{\rm O}_2]} = \frac{x^2}{(0.020 - x)}$$

As $pK_a = 4.87$, $K_a = 10^{-4.87}$. K_a is very small so $0.020 - x \sim 0.020$ and hence:

$$x^2 = 0.020 \times 10^{-4.87}$$
 or $x = 0.000519$ M = [H·]

Hence, the pH is given by:

 $pH = -log_{10}[H \cdot] = -log_{10}[0.000519] = 3.28$

Answer: **pH** = 3.28

At 25 °C, 1.00 L of Solution B consists of 2.24 g of potassium propionate ($KC_3H_5O_2$) dissolved in water. Calculate the pH of Solution B.

The molar mass of KC₃H₅O₂ is: molar mass = (39.10 (K) + 3×12.01 (C) + 5×1.008 (H) + 2×16.00 (O)) g mol⁻¹ = 112.17 g mol-1

Thus, 2.24 g corresponds to:

number of moles = $\frac{\text{mass}}{\text{molar mass}} = \frac{2.24 \text{ g}}{112.17 \text{ g mol}^{-1}} = 0.0200 \text{ mol}$

If this is dissolved in 1.0 L, $[C_3H_5O_2^-]_{initial} = 0.0200$ M.

As $C_3H_5O_2^-$ is a weak base, $[C_3H_5O_2^-]$ must be calculated by considering the equilibrium:

ANSWER CONTINUES ON THE NEXT PAGE

Marks 8

	$C_3H_5O_2^-$	H ₂ O	1	$C_3H_6O_2$	OH-
initial	0.0200	large		0	0
change	- <i>y</i>	negligible		+ <i>y</i>	+ <i>y</i>
final	0.0200 - y	large		У	У

The equilibrium constant K_b is given by:

$$K_{\rm b} = \frac{[{\rm C}_3{\rm H}_6{\rm O}_2][{\rm O}{\rm H}^-]}{[{\rm C}_3{\rm H}_5{\rm O}_2^-]} = \frac{y^2}{(0.0200 - y)}$$

For an acid and its conjugate base:

 $pK_a + pK_b = 14.00$

 $pK_b = 14.00 - 4.87 = 9.13$

As $pK_b = 9.13$, $K_b = 10^{-9.13}$. K_b is very small so $0.0200 - y \sim 0.0200$ and hence: $y^2 = 0.0200 \times 10^{-9.13}$ or y = 0.000000385 M = [OH⁻]

Hence, the pOH is given by:

 $pOH = -log_{10}[OH^{-}] = log_{10}[0.000000385] = 5.41$

Finally, pH + pOH = 14.00 so

pH = 14.00 - 5.41 = 8.59

Answer: **pH = 8.59**

Solution B (1.00 L) is poured into Solution A (1.00 L) and allowed to equilibrate at 25 $^{\circ}$ C to give Solution C. Calculate the pH of Solution C.

Combining the two solutions will double the overall volume, to 2.00 L. As a result, the concentration of both the acid and base will halve: [acid] = 0.010 M and [base] = 0.0100 M.

The solution contains a weak acid and its conjugate base. The pH of this buffer solution can be calculated using the Henderson-Hasselbalch equation:

 $pH = pK_a + \log \frac{[base]}{[acid]} = 4.87 + \log \frac{0.0100}{0.010} = 4.87$

Answer: **pH** = **4.87**

If you wanted to adjust the pH of Solution C to be exactly equal to 5.00, which component in the mixture would you need to increase in concentration? More base is needed: add KC₃H₅O₂ • Peroxydisulfate and iodide ions react according to the following equation.

$$S_2O_8^{2-}(aq) + 3I^{-}(aq) \rightarrow 2SO_4^{2-}(aq) + I_3^{-}(aq)$$

The following rate data were collected at room temperature.

Experiment	$[S_2O_8^{2-}(aq)]_0(M)$	$[I^{-}(aq)]_{0}(M)$	Initial rate (mol $L^{-1} s^{-1}$)
1	0.080	0.034	$2.2 imes 10^{-4}$
2	0.080	0.017	1.1×10^{-4}
3	0.160	0.017	$2.2 imes 10^{-4}$

Determine the rate law for the reaction.

Between experiments (1) and (2), $[S_2O_8^{2-}(aq)]_0$ is constant and $[I^{-}(aq)]_0$ is halved from 0.034 M to 0.017 M. This halves the initial rate. The rate is directly proportional to $[I^{-}(aq)]$: the reaction is first order with respect to $[I^{-}(aq)]$.

Between experiments (2) and (3), $[\Gamma(aq)]_0$ is constant and $[S_2O_8^{2-}(aq)]_0$ is doubled from 0.080 M to 0.160 M. This doubles the initial rate. The rate is directly proportional to $[S_2O_8^{2-}(aq)]$: the reaction is first order with respect to $[S_2O_8^{2-}(aq)]$.

Hence:

rate = $k[S_2O_8^{2-}(aq)][\Gamma(aq)]$

Calculate the value of the rate constant at room temperature.

From experiment (1), the rate = 2.2×10^{-4} M s⁻¹ when [S₂O₈²⁻(aq)] = 0.080 M and [I⁻ (aq)] = 0.034 M. Hence:

 $2.2 \times 10^{-4} \text{ M s}^{-1} = k(0.080 \text{ M})(0.034 \text{ M})$

 $k = 0.081 \text{ M}^{-1} \text{ s}^{-1}$

(Note that the units are worked out by requiring that the units on the two sides of the rate law are the same.)

Answer: 0.081 M⁻¹ s⁻¹

CHEM1102	2009-J-	-7 June 2009	
	following pairs of con the compounds in each se	npounds. Indicate the isomeric relationship	Marks 8
		constitutional isomers (different connectivity)	
(A)		diastereoisomers (same connectivity but different 3D arrangement)	
H NMe ₂ OH (B)	HO H H NMe ₂	enantiomers (non-superimposable mirror images)	
$H \xrightarrow{Cl} H \\ H \xrightarrow{Cl} CH_3$	$HO \xrightarrow{Cl} H$ H H CH ₃	conformational isomers (can be interconverted by rotation of the central C-C bond)	
$\begin{array}{c} CHO \\ H \longrightarrow OH \\ HO \longrightarrow H \\ CO_2Et \end{array}$	$HO + H$ $HO + H$ CO_2Et (C)	diastereoisomers (same connectivity but different 3D arrangement. Not enantiomers)	
Give the full name		nambiguously describes its stereochemistry.	
(<i>E</i>)-2-pentene. (TI	he alkyl groups are on	opposite sides of the C=C hence (<i>E</i>)).	
What is the config	uration of the stereoger	nic centre in compound (B)?	
4 1 H NMe2 3 2 The priorities are indicated on the figure. With the lowest priority at the back, the sequence 1-2-3 is in a clockwise direction: (<i>R</i>).			
	a meso isomer? Give a	reason for your answer.	

No. C does not have a plane of symmetry so is optically active.

CHEM1102	2009-J-8	June 2009		
Complete the following table. Make sure you indicate any relevant stereochemistry.				
STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)		
	H ₂ /Pd/C (catalyst)			
ОН	1. dilute NaOH 2. CH ₃ Br			
ОН	$\operatorname{Cr_2O_7}^{2\Theta}/\operatorname{H}^{\oplus}$	ОН		
	aqueous H ₂ SO ₄	ОН		
Br	1. Mg / dry ether 2. H ₂ O			
ОСООН	1. NaBH4 2. H ⁺ / H ₂ O	ОН		

The final product may react further:

CHEM1102

the following compounds is	formula(s) of the organic product(s) formed when each of treated with 4 M sodium hydroxide. The first three perature; the last two require heating.	Marks 7
COMPOUND	ORGANIC PRODUCT(S)	
CH ₃ CH ₂ COOH	$CH_3CH_2CO_2^{\Theta}$	
$\begin{array}{c} CH_{3} \\ H \searrow \stackrel{C}{\underset{N \oplus}{{\underset{H}{{\underset{\Theta}{}{\underset{CH_{3}}{{\underset{Br}{{\underset{\Theta}{}{\underset{Br}{{\underset{\Theta}{}{\underset{CH_{3}}{{\underset{Br}{{\underset{\Theta}{\underset{Br}{}{\underset{Br}{{\underset{\Theta}{\underset{Br}{}{\underset{Br}{{\underset{Br}{\underset{Br}{}{\underset{Br}{{\underset{Br}{\underset{Br}{}{\underset{Br}{{\underset{Br}{\underset{Br}{}{\underset{Br}{\underset{Br}{}{\underset{Br}{{\underset{Br}{\underset{Br}{}{\underset{Br}{\underset{Br}{}{\underset{Br}{\underset{Br}{}{\underset{Br}{\underset{Br}{}{\underset{Br}{\underset{Br}{}{\underset{Br}{\\Br}{\underset{Br}{\\Br}{\underset{Br}{\underset{Br}{\\Br}{\\Br}{\\Br}{\\Br}{\\Br}{\\Br}{\\Br}{$	H ₃ C CH ₃ CH ₃	
H_3C O CH-C O H_3C Cl	$H_{3}C O H_{-}C H_{-}$	
H ₃ C ^O O	$\begin{array}{c} O \\ H_{3}C \\ C \\ O \\ O \\ Na \\ C \\ O \\ Na \\ C \\ C \\ O \\ O$	
O N I	$\bigcup_{\substack{O \\ O \\ P}} O^{\Theta} Na^{\oplus} + H^{-N}$	

CHEM1102

2009-J-9

June 2009

CHEM1102	2009-J-	10 June 2009	
	of the two	tiomeric forms, compounds I and II. In the enantiomers of 1,2-dichloropropane clearly	Aarks 5
compound I		compound II	
Cl,H Cl,H (S)-enantiomer		H, Cl Cl (<i>R</i>)-enantiomer	
		nd V with molecular formula $C_3H_6Cl_2$. In rmulas and names of these compounds.	
Structure	Na	me	
compound III $\begin{array}{c} Cl \\ \hline Cl \\ \hline Cl \end{array}$		2,2-dichloropropane	
compound IV		1,1-dichloropropane	
compound V		1,3-dichloropropane	

Cl

Cl

CHEM1102	2009-J-11	June 2009			
Compounds I, II, III, IV and V are isomers. From the list <i>enantiomers</i> , <i>diastereomers</i> , <i>conformers</i> , <i>constitutional isomers</i> complete the following table.					
PAIR OF COMPOUNDS		ISOMERIC RELATIONSHIP BETWEEN PAIR OF COMPOUNDS			
I and III	co	nstitutional isomers			
I and IV	I and IV constitutional isomers				
II and IV	II and IV constitutional isomers				
	1,2-Dichloropropane can be synthesised in the laboratory by treatment of propene with chlorine as is shown in the following equation.				
$\begin{array}{c} H \\ C = C \\ H \\ H \end{array}$	Cl ₂	$CH_2 - C - Cl$ Cl H			
Which of the following best dese product: (<i>R</i>)-enantiomer, (<i>S</i>)-enaracemate?		racemate (equal amounts of (<i>R</i>) and (<i>S</i>) wi be formed)	11		

