CHEM1102 Worksheet 13 - Answers to Critical Thinking Questions

The worksheets and the associated group work form an integral part of the learning outcomes and experience for this unit.

Model 1: Naming Coordination Compounds

- 1. (a) pentaamminechloridocobalt(III)
 - (b) trichloridohydroxidoaurate(III)
 - (c) tetraaquadichloridochromium(III)
 - (d) pentaammineaquaruthenium(III)
- 2. (a) pentaamminechloridocobalt(III) chloride
 - (b) potassium trichloridohydroxidoaurate(III)
 - (c) tetraaquadichloridochromium(III) chloride
 - (d) pentaammineaquaruthenium(III) bromide
 - (e) tris(ethylenediamine)nickel(II) iodide

Model 2: Rate of Reaction

- 1. Rate is defined as the change in concentration with time: $M s^{-1}$.
- 2. As [sucrose] decreases, [fructose] *increases* at the same rate.
- 3. Sucrose and H_3O^+ are both reactants and so their concentrations decrease with time, Fructose and glucose are both products and so their concentrations increase with time.
- 4. From the chemical equation, [NO(g)] will increase at exactly the same rate as [NO₂(g)] decreases but [O₂(g)] is produced at half the rate.

Model 3: The Rate Law

- 1. (a) The rate increases by a factor of 4 (i.e. it quadruples).
 - (b) The rate increases by a factor of 2 (i.e. it doubles)
 - (c) The rate is unchanged.
- 2. (a) The rate doubles.

3.

- (b) The rate doubles.
- (c) The rate quadruples (i.e. it increases by a factor of 4).
- (a) $[lactose]_0$ is doubled and $[H_3O^+]$ is unchanged. The rate doubles.
 - (b) [lactose]₀ is unchanged and $[H_3O^+]$ is increased by a factor of 4. The rate increases by a factor of 4.
 - (c) The reaction is first order with respect to both lactose and H_3O^+ : x = 1 and y = 1. rate = $k[lactose]^1[H_3O^+]^1 = k[lactose][H_3O^+]$

- (d) [lactose]₀ is decreased by a factor of 2. On its own, this change would half the rate.
 [H₃O⁺] is increased by a factor of 4. On its own, this change would reduce the rate by 4.
 When both changes are made together, the rate therefore doubles.
- (e) Using experiment (1),

rate = $k \times (0.01 \text{ M}) \times (0.001 \text{ M}) = 0.00116 \text{ M s}^{-1}$ so $k = 116 \text{ M}^{-1} \text{ s}^{-1}$ Using experiment (2),

rate = $k \times (0.02 \text{ M}) \times (0.001 \text{ M}) = 0.00232 \text{ M s}^{-1}$ so $k = 116 \text{ M}^{-1} \text{ s}^{-1}$ Using experiment (3),

rate = $k \times (0.01 \text{ M}) \times (0.004 \text{ M}) = 0.00464 \text{ M s}^{-1}$ so $k = 116 \text{ M}^{-1} \text{ s}^{-1}$