- Give the full electron configuration for the ground state K atom.
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$

What are the three quantum numbers that describe the orbital that contains the electron furthest from the nucleus in the K atom?

$n=\mathbf{4}$	$l=\mathbf{0}$	$m_{1}=\mathbf{0}$

- Draw the Lewis structures, showing all valence electrons for the following species.

Indicate which of the species have contributing resonance structures.

		NO_{3}^{-}
Resonance: YES / NO	Resonance: YES / NO	Resonance: YES / NO

- Human haemoglobin has a molar weight of $6.45 \times 10^{4} \mathrm{~g} \mathrm{~mol}^{-1}$ and contains 3.46 g of iron per kg. Calculate the number of iron atoms in each molecule of haemoglobin.

A mole of haemoglobin has a mass of $6.45 \times 10^{4} \mathrm{~g}=\mathbf{6 4 . 5} \mathrm{kg}$. As each kilogram contains 3.45 g of iron, a mole contains $(64.5 \times 3.45)=223 \mathrm{~g}$ of iron.

The atomic mass of iron is 55.85 so this mass of iron corresponds to:

$$
\text { number of moles of iron }=\frac{\text { mass }}{\text { atomic mass }}=\frac{223}{55.85}=3.98
$$

Answer:4 iron atoms per molecule

- If 50 mL of a 0.10 M solution of AgNO_{3} is mixed with 50 mL of a 0.040 M solution of BaCl_{2}, what mass of $\mathrm{AgCl}(\mathrm{s})$ will precipitate from the reaction?

The precipitation reaction, $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})$, is a 1:1 reaction of $\mathrm{Ag}^{+}(\mathrm{aq})$ and $\mathrm{Cl}^{-}(\mathrm{aq})$ ions.

Number of moles of $\mathbf{A g}^{+}=$concentration \timesvolume $=0.10 \times \frac{\mathbf{5 0}}{1000}=\mathbf{0 . 0 0 5 0} \mathbf{~ m o l}$
As each mole of $\mathrm{BaCl}_{2}(\mathrm{~s})$ gives two moles of $\mathrm{Cl}^{-}(\mathrm{aq})$:

$$
\text { Number of moles of } \mathrm{Cl}^{-}=2 \times 0.040 \times \frac{50}{1000}=0.0040 \mathrm{~mol}
$$

$\mathrm{Ag}^{+}(\mathrm{aq})$ is present in excess so $\mathrm{Cl}^{-}(\mathrm{aq})$ is the limiting reagent. Hence, $\mathbf{0 . 0 0 4 0} \mathbf{~ m o l}$ of $\mathrm{AgCl}(\mathrm{s})$ will be formed.
The molar mass of $\operatorname{AgCl}(\mathrm{s})=(\mathbf{1 0 7 . 8 7}(\mathbf{A g}))+(\mathbf{3 5 . 4 5}(\mathrm{Cl}))=143.32$.
The mass of $\mathrm{AgCl}(\mathrm{s})$ formed is:
mass $=$ number of moles \times molar mass $=0.0040 \times 143.32=0.57 \mathrm{~g}$

Answer: $\mathbf{0 . 5 7} \mathbf{g}$
What is the concentration of NO_{3}^{-}ions in the final solution from the reaction above?

The number of moles of $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$ is $\mathbf{0 . 0 0 5 0} \mathbf{~ m o l}$. After mixing, the final solution has a volume of $(\mathbf{5 0}+\mathbf{5 0})=\mathbf{1 0 0} \mathbf{~ m L}$. Hence, the concentration is:

$$
\left[\mathrm{NO}_{3}^{-}\right]=\frac{\text { number of moles }}{\text { volume }}=\frac{0.0050}{100 / 1000}=0.050 \mathrm{~mol}
$$

- Tranexamic acid, trans-(4-aminomethyl)cyclohexanecarboxylic acid, is used for the treatment of severe haemorrhage in patients with haemophilia.

Provide the requested information for each of the indicated atoms in tranexamic acid.

Atom	Geometric arrangement of the electron pairs around the atom	Hybridisation of the atom	Geometry/shape of σ-bonding electron pairs around the atom
C-1	trigonal planar	$\mathbf{s p}^{2}$	trigonal planar
C-2	tetrahedral	$\mathbf{s p}^{3}$	tetrahedral
O-3	tetrahedral	$\mathbf{s p}^{3}$	bent
N-4	tetrahedral	$\mathbf{s p}^{3}$	trigonal pyramidals

- Consider the boiling points of the compounds 1-propanol, 1-propanethiol and 1-propaneselenol shown in the table below?

Compound	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SeH}$
Boiling point $\left({ }^{\circ} \mathrm{C}\right)$	97.2	67.8	147.0

With reference to intermolecular forces, explain briefly why the boiling points increase in the order $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SeH}$.

Polarisability of atoms increases as the size of the atoms increase. The greater the polarisability, the stronger the dispersion forces. On this basis, the expected boiling point order would be $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}<\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SH}<\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SeH}$.
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ also has hydrogen bonding between the OH groups. H -bonding is a stronger intermolecular force than dispersion forces and this increases the boiling point of $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ to be above that of $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SH}$. The effect is not enough to push it above the boiling point of $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SeH}$.

- Consider the following equation.

$$
\mathrm{HBrO}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{BrO}^{-}(\mathrm{aq})+\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})
$$

Name all of the species in this equation.

HBrO	hypobromous acid
BrO^{-}	hypobromite ion
NH_{3}	ammonia
NH_{4}^{+}	ammonium ion

Complete the following table by giving the correct $\mathrm{p} K_{\mathrm{a}}$ or $\mathrm{p} K_{\mathrm{b}}$ value where it can be calculated. Mark with a cross (\boldsymbol{x}) those cells for which insufficient data have been given to calculate a value.

Species	HBrO	NH_{3}	BrO^{-}	$\mathrm{NH}_{4}{ }^{+}$
$\mathrm{p} K_{\mathrm{a}}$ of acid	8.64	\boldsymbol{x}	\boldsymbol{x}	$\mathbf{9 . 2 4}$
$\mathrm{p} K_{\mathrm{b}}$ of base	\boldsymbol{x}	4.76	$\mathbf{5 . 3 6}$	\boldsymbol{x}

Determine on which side (left or right hand side) the equilibrium for the reaction above will lie. Provide a brief rationale for your answer.

The reaction is the sum of the acid-base equilibra for $\mathbf{H B r O}$ and NH_{3} :

$$
\begin{array}{ll}
\mathrm{HBrO}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{BrO}^{-}(\mathrm{aq}) & K_{\mathrm{a}}(\mathrm{HBrO})=10^{-8.64} \\
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq}) & K_{\mathrm{a}}\left(\mathrm{NH}_{3}\right)=\frac{1}{K_{\mathrm{a}}\left(\mathrm{NH}_{4}^{+}\right)}=10^{+9.24} \\
\hline \mathrm{HBrO}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{BrO}^{-}(\mathrm{aq}) & K=K_{\mathrm{a}}(\mathbf{H B r O}) \times K_{\mathrm{a}}\left(\mathrm{NH}_{3}\right)
\end{array}
$$

Hence, $K=\left(10^{-8.64}\right) \times\left(10^{+9.24}\right)=10^{+0.64}=4.4$. As $K>1$, the reaction favours products.

- Complete the following table. Make sure you complete the name of the starting material where indicated.

STARTING MATERIAL NAME (where required)	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
 Name: butanoic acid (or butyric acid)	SOCl_{2}	
 Name: (Z)-2-pentene	$\begin{gathered} \mathrm{Br}_{2} \\ \left(\mathrm{CCl}_{4} \text { solvent }\right) \end{gathered}$	
 Name: 2-methylbutyraldehyde (or 2-methylbutanal)	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{\mathbf{2 -}} / \mathrm{H}^{+}$	
	$3 \mathrm{M} \mathrm{NaOH} /$ heat	
	conc. $\mathrm{H}_{2} \mathrm{SO}_{4} /$ heat	
	$1 \mathrm{M} \mathrm{HCl} /$ heat	

- Trifluridine is an analogue of the nucleoside thymidine and is used clinically as an anti-viral agent. It differs from thymidine in that the methyl group is replaced by a trifluoromethyl group.

Give the molecular formula of trifluridine.
Classify the sugar present in trifluridine as a furanose or pyranose.

Is the sugar present as the α-anomer or β-anomer?
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{\mathbf{2}} \mathrm{O}_{\mathbf{5}}$
furanose
β-anomer

Give an example of a nucleotide derived from trifluridine.

Hydrolysis of trifluridine gives the sugar 2-deoxyribose and a base. Give the structure of the base and the structure of one of its tautomers.
base

- Show clearly the reagents you would use to carry out the following chemical conversion. Draw constitutional formulas for any intermediate compounds. Note: More than one step is required.

hot conc. KOH ethanol solvent

Two possible routes are shown.

- At equilibrium in aqueous solution, D-xylose exists as a mixture containing the α-pyranose, β-pyranose, α-furanose and β-furanose forms. Draw Haworth formulas in the appropriate boxes below for each of these forms.
(2)

Give the stereoformula of the product(s) formed when β-D-xylopyranose is heated with methanol and an acid catalyst.

- The constitutional formula of the naturally occurring tetrapeptide, Tyr-Lys-Ser-Asn,

Marks is shown below.

Give the Fischer projection of L-Lys as the zwitterion.	Complete the stereoformula of (S)-Ser.
(a)	
$\left(\mathrm{NH}_{3}\right.$	(c)

Give the constitutional formulas in the correct ionic states of the products obtained from the vigorous acidic hydrolysis (6 M HCl) of the tetrapeptide.

Give the constitutional formulas for the following dipeptides present in water at the indicated pH values.
Tyr-Ser at pH 12

