

$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$$

What are the three quantum numbers that describe the orbital that contains the electron furthest from the nucleus in the K atom?

<i>n</i> = 4	l = 0	$m_1 = 0$
--------------	--------------	-----------

• Draw the Lewis structures, showing all valence electrons for the following species. Indicate which of the species have contributing resonance structures.

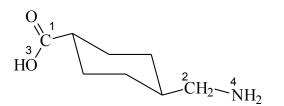
• Human haemoglobin has a molar weight of 6.45×10^4 g mol⁻¹ and contains 3.46 g of iron per kg. Calculate the number of iron atoms in each molecule of haemoglobin.

3

A mole of haemoglobin has a mass of 6.45×10^4 g = 64.5 kg. As each kilogram contains 3.45 g of iron, a mole contains (64.5 × 3.45) = 223 g of iron.

The atomic mass of iron is 55.85 so this mass of iron corresponds to:

number of moles of iron =
$$\frac{\text{mass}}{\text{atomic mass}} = \frac{223}{55.85} = 3.98$$


4

Marks

2

Marks • If 50 mL of a 0.10 M solution of AgNO₃ is mixed with 50 mL of a 0.040 M solution 3 of BaCl₂, what mass of AgCl(s) will precipitate from the reaction? The precipitation reaction, $Ag^+(aq) + CI^-(aq) \rightarrow AgCl(s)$, is a 1:1 reaction of $Ag^{+}(aq)$ and $Cl^{-}(aq)$ ions. Number of moles of Ag⁺ = concentration × volume = $0.10 \times \frac{50}{1000} = 0.0050$ mol As each mole of BaCl₂(s) gives two moles of Cl⁻(aq): Number of moles of CF = $2 \times 0.040 \times \frac{50}{1000} = 0.0040$ mol $Ag^{+}(aq)$ is present in excess so Cl⁻(aq) is the limiting reagent. Hence, 0.0040 mol of AgCl(s) will be formed. The molar mass of AgCl(s) = (107.87 (Ag)) + (35.45 (Cl)) = 143.32. The mass of AgCl(s) formed is: mass = number of moles \times molar mass = 0.0040 \times 143.32 = 0.57 g Answer: 0.57 g What is the concentration of NO₃⁻ ions in the final solution from the reaction above? The number of moles of $NO_3(aq)$ is 0.0050 mol. After mixing, the final solution has a volume of (50 + 50) = 100 mL. Hence, the concentration is: $[NO_3^-] = \frac{\text{number of moles}}{\text{volume}} = \frac{0.0050}{100/1000} = 0.050 \text{ mol}$ Answer: 0.050 mol

• Tranexamic acid, *trans*-(4-aminomethyl)cyclohexanecarboxylic acid, is used for the treatment of severe haemorrhage in patients with haemophilia.

Provide the requested information for each of the indicated atoms in tranexamic acid.

Atom	Geometric arrangement of the electron pairs around the atom	Hybridisation of the atom	Geometry/shape of σ -bonding electron pairs around the atom
C-1	trigonal planar	sp ²	trigonal planar
C-2	tetrahedral	sp ³	tetrahedral
O-3	tetrahedral	sp ³	bent
N-4	tetrahedral	sp ³	trigonal pyramidals

• Consider the boiling points of the compounds 1-propanol, 1-propanethiol and 1-propaneselenol shown in the table below?

Compound	CH ₃ CH ₂ CH ₂ OH	CH ₃ CH ₂ CH ₂ SH	CH ₃ CH ₂ CH ₂ SeH
Boiling point (° C)	97.2	67.8	147.0

With reference to intermolecular forces, explain briefly why the boiling points increase in the order $CH_3CH_2CH_2SH < CH_3CH_2CH_2OH < CH_3CH_2CH_2SeH$.

Polarisability of atoms increases as the size of the atoms increase. The greater the polarisability, the stronger the dispersion forces. On this basis, the expected boiling point order would be $C_3H_7OH < C_3H_7SH < C_3H_7SeH$.

 C_3H_7OH also has hydrogen bonding between the OH groups. H-bonding is a stronger intermolecular force than dispersion forces and this increases the boiling point of C_3H_7OH to be above that of C_3H_7SH . The effect is not enough to push it above the boiling point of C_3H_7SH .

3

Marks

4

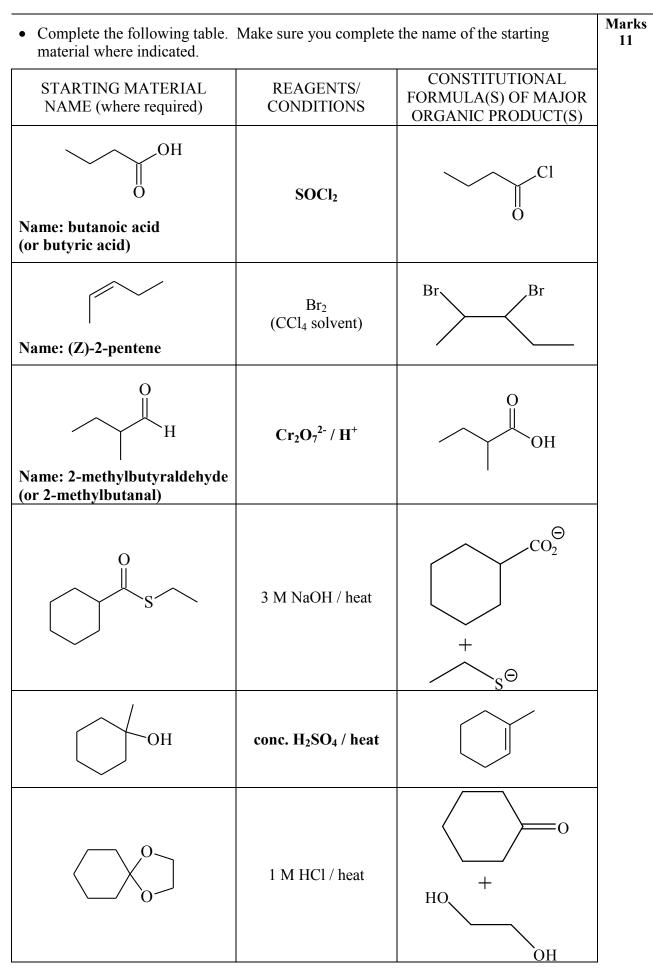
• Consider the following equation.

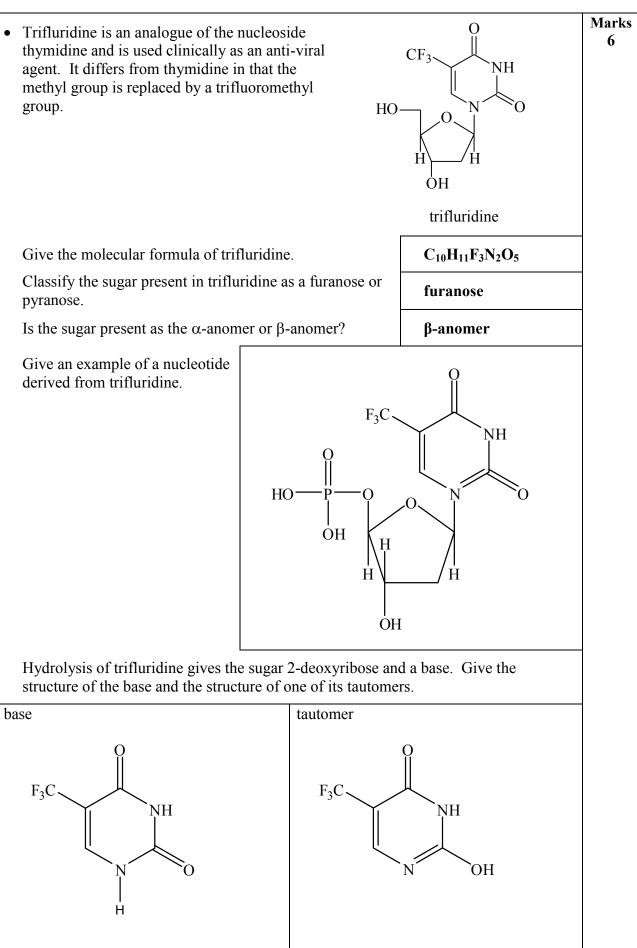
 $HBrO(aq) + NH_3(aq) \iff BrO^{-}(aq) + NH_4^{+}(aq)$

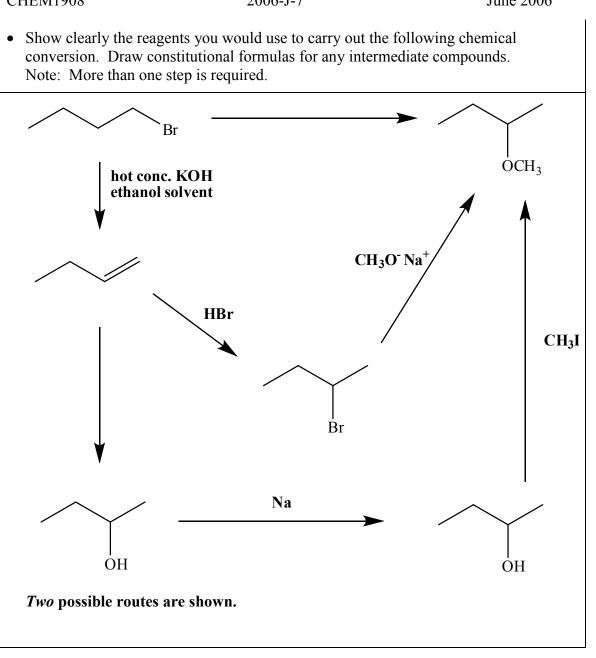
Name all of the species in this equation.

HBrO	hypobromous acid
BrO ⁻	hypobromite ion
NH ₃	ammonia
$\mathrm{NH_4}^+$	ammonium ion

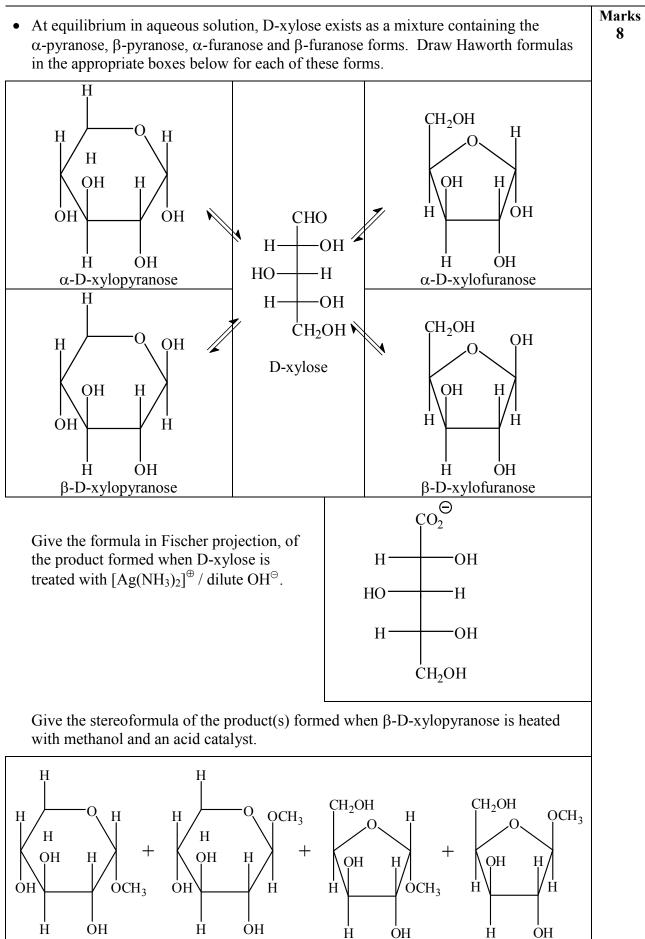
Complete the following table by giving the correct pK_a or pK_b value where it can be calculated. Mark with a cross (\times) those cells for which insufficient data have been given to calculate a value.

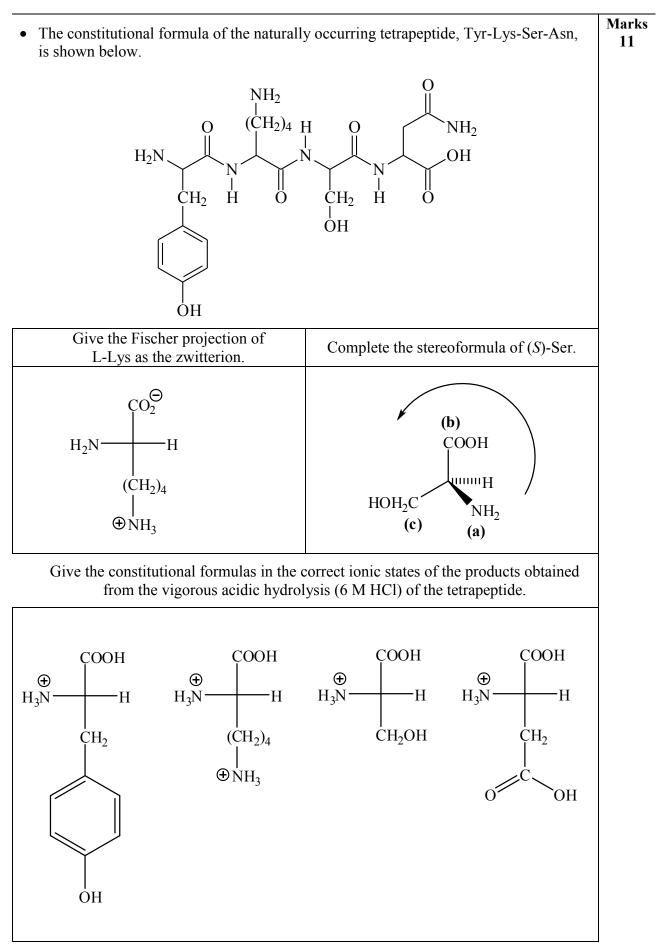

Species	HBrO	NH ₃	BrO ⁻	$\mathrm{NH_4}^+$
pK_a of acid	8.64	×	×	9.24
pK_b of base	×	4.76	5.36	×

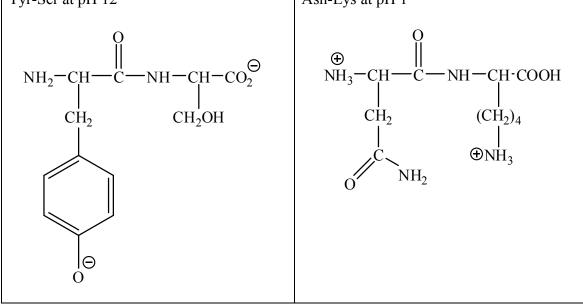

Determine on which side (left or right hand side) the equilibrium for the reaction above will lie. Provide a brief rationale for your answer.


The reaction is the sum of the acid-base equilibra for HBrO and NH3:HBrO(aq) \Rightarrow H⁺(aq) + BrO⁻(aq) K_a (HBrO) = 10^{-8.64}H⁺(aq) + NH3(aq) \Rightarrow NH4⁺(aq) K_a (NH3) = $\frac{1}{K_a(NH_4^+)}$ = 10^{+9.24}HBrO(aq) + NH3(aq) \Rightarrow BrO⁻(aq) $K = K_a$ (HBrO) $\times K_a$ (NH3)

Hence, $K = (10^{-8.64}) \times (10^{+9.24}) = 10^{+0.64} = 4.4$. As K > 1, the reaction favours products.


Marks 5




4

0-J-8

Give the constitutional formulas for the following dipeptides present in water at the
indicated pH values.Tyr-Ser at pH 12Asn-Lys at pH 1

