• Complete the following table. Give, as required, the formula, the systematic name, the oxidation number of the underlined atom and, where indicated, the number of *d* electrons for the element in this oxidation state.

| Formula                                      | Systematic name            | Oxidation<br>number | Number of <i>d</i> electrons |
|----------------------------------------------|----------------------------|---------------------|------------------------------|
| <u>C</u> O <sub>2</sub>                      | carbon dioxide             | +IV or +4           | 0                            |
| Na <sub>2</sub> <u>Cr</u> O <sub>4</sub>     | sodium dichromate          | +VI or +6           | 0                            |
| <u>Fe</u> Cl <sub>3</sub> ·3H <sub>2</sub> O | iron(III) chloride-3-water | +III or +3          | 5                            |
|                                              | potassium sulfate          | ·                   |                              |

• Draw the Lewis structures, showing all valence electrons for the following species.

| CH <sub>3</sub> <sup>-</sup>                                     | CH <sub>3</sub> <sup>+</sup>                                        |
|------------------------------------------------------------------|---------------------------------------------------------------------|
| $\begin{bmatrix} \vdots \\ H - C - H \\ H \end{bmatrix} \ominus$ | $\begin{bmatrix} H - C - H \\ H \end{bmatrix} \textcircled{\oplus}$ |

Indicate which of these species you expect will be more stable and explain why.

## CH<sub>3</sub><sup>-</sup> is more stable as it has a full octet of electrons

• Desferal is a siderophore-based drug that is used in humans to treat iron-overload. One molecule of Desferal (molecular formula:  $C_{25}H_{48}O_8N_6$ ) can bind one Fe<sup>3+</sup> ion. A patient with an iron-overload disease had an excess of  $5.34 \times 10^{-4}$  M Fe<sup>3+</sup> in her bloodstream. Assuming the patient had a total blood volume of 4.84 L, what mass of Desferal would be required to complex all of the excess Fe<sup>3+</sup>?

As one mole of Deferal will complex one mole of Fe<sup>3+</sup>, the number of moles of Desferal required is:

number of moles = concentration × volume =  $(5.34 \times 10^{-4}) \times 4.84 = 2.58 \times 10^{-3}$  M

The molar mass of C<sub>25</sub>H<sub>48</sub>O<sub>8</sub>N<sub>6</sub> is:

$$(25 \times 12.01 \text{ (C)}) + (48 \times 1.008 \text{ (H)}) + (8 \times 16.00 \text{ (O)}) + (6 \times 14.01 \text{ (N)}) = 560.694$$

Hence, the mass required is:

mass = number of moles × molar mass =  $(2.58 \times 10^{-3}) \times (560.694) = 1.45$  g

Answer: 1.45 g

3

2

Marks • Glycine, NH<sub>2</sub>CH<sub>2</sub>COOH, the simplest of all naturally occurring amino acids, has a 5 melting point of 292 °C. The  $pK_a$  of the acid group is 2.35 and the  $pK_a$  associated with the amino group is 9.78. Draw a structure that indicates the charges on the molecule at the physiological pH of 7.4. As pH = 7.4 is higher than the  $pK_a$  of the acid group, -COOH, it will exist primarily in its deprotonated, conjugate base form, -COO. As pH = 7.4 is lower than the  $pK_a$  of the amino group,  $-NH_2$ , it will exist primarility in its protonated form, -NH<sub>3</sub><sup>+</sup>.  $\stackrel{\oplus}{}_{H_3N} - CH_2 - COO^{\ominus}$ Glycine will exist in the uncharged, zwitterionic form: Describe the hybridisation of the two carbon atoms and the nitrogen atom in glycine and the geometry of the atoms surrounding these three atoms. N has 4 bonds and no lone pairs: sp<sup>3</sup> with a tetrahedral The structure is: arrangement. C<sub>a</sub> has 4 bonds and no lone pairs: sp<sup>3</sup> with a tetrahedral arrangement. C<sub>b</sub> has 3 bonds and no lone pairs: sp<sup>2</sup> with a trigonal planar arrangement. Glycine has an unusually high melting point for a small molecule. Suggest a reason for this. Glycine with a positively and a negatively charged end. There is therefore ionic bonding between the molecules leading to strong intermolecular forces. 2 • Many gases are available for use in compressed gas cylinders, in which they are stored at high pressures. Calculate the mass of oxygen gas that can be stored at 20 °C and 170 atm pressure in a cylinder with a volume of 60.0 L. Using the ideal gas law, PV = nRT, the number of moles that can be stored is:  $\mathbf{n} = \frac{\mathbf{PV}}{\mathbf{RT}} = \frac{(170) \times (60.0)}{(0.08206) \times (20 + 273)} = 424 \, \text{mol}$ As the molar mass of  $O_2$  is  $(2 \times 16.00) = 32.00$ , this corresponds to a mass of: mass = number of moles  $\times$  molar mass = 424  $\times$  32.00 = 13600 g = 13.6 kg Answer: 13.6 kg

Marks • If 20.0 mL of a 0.100 M solution of sodium phosphate is mixed with 25.0 mL of a 6 0.200 M solution of zinc chloride, what mass of zinc phosphate will precipitate from the reaction? 25.0 mL of a 0.200 M solution of ZnCl<sub>2</sub> contains:  $n(Zn^{2+}(aq)) = concentration \times volume = 0.200 \times \frac{25}{1000} = 0.00500 mol$ 20.0 mL of a 0.100 solution of Na<sub>3</sub>PO<sub>4</sub> contains:  $n(PO_4^{3-}) = 0.100 \times \frac{20}{1000} = 0.00200 \text{ mol}$ The ionic equation for the precipitation reaction is:  $3Zn^{2+}(aq) + 2PO_4^{3-}(aq) \rightarrow Zn_3(PO_4)_2(s)$ As  $n(Zn^{2+}(aq) > \frac{3}{2} \times n(PO_4^{-3-}(aq)), PO_4^{-3-}$  which is the limiting reagent. The maximum amount of product depends on  $n(PO_4^{3-})$ . The amount of zinc phosphate formed is:  $n(Zn_3(PO_4)_2(s) = \frac{1}{2} \times n(PO_4^{3-}(aq)) = \frac{1}{2} \times 0.00200 = 0.00100 \text{ mol}$ The formula mass of zinc phosphate is:  $(3 \times 65.39 (Zn)) + 2 \times (30.97 (P) + 4 \times 16.00 (O)) = 386.11$ The mass of this amount of zinc phosphate is therefore: mass = number of moles  $\times$  formula mass = 0.00100  $\times$  386.11 = 0.386 g

Answer: 0.386 g

## ANSWER CONTINUES ON THE NEXT PAGE

What is the final concentration of zinc ions in solution after the above reaction?

The number of moles of  $Zn^{2+}(aq)$  removed by precipitation =  $3 \times 0.00100 = 0.00300$  mol. The amount remaining is therefore:

 $n(Zn^{2+}(aq)) = 0.00500 - 0.00300 = 0.00200 mol$ 

The total volume of the solution after mixing is (20.0 + 25.0) = 45.0 mL so the concentration is:

 $[Zn^{2+}(aq)] = \frac{number of moles}{volume} = \frac{0.00200}{(45/1000)} = 0.0444 M$ 

Answer: **0.0444 M** 

What is the final concentration of sodium ions in solution after the above reaction?

20.0 mL of a 0.100 solution of Na<sub>3</sub>PO<sub>4</sub> contains:

 $n(Na^+) = 3 \times 0.100 \times \frac{20}{1000} = 0.00600 \text{ mol}$ 

After mixing, this amount is contained in a volume of 45.0 mL so the concentration is:

 $[Na^{+}(aq)] = \frac{number of moles}{volume} = \frac{0.00600}{(45/1000)} = 0.133 M$ 

Answer: 0.133 M

| • Complete the following table. Make sure you complete the name of the starting material or major product where indicated.       |                                                               |                                                                                                                     |   |  |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---|--|
| STARTING MATERIAL                                                                                                                | REAGENTS/<br>CONDITIONS                                       | CONSTITUTIONAL<br>FORMULA(S) OF MAJOR<br>ORGANIC PRODUCT(S)                                                         |   |  |
| CH <sub>3</sub> CH <sub>2</sub> CHO                                                                                              | 1. NaBH <sub>4</sub><br>2. H <sup>+</sup> / H <sub>2</sub> O  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH                                                                  |   |  |
| CH <sub>3</sub> CH=CHCH <sub>3</sub>                                                                                             | dilute H <sub>2</sub> SO <sub>4</sub> / heat                  | CH <sub>3</sub> CH <sub>2</sub> CHCH <sub>3</sub><br>OH                                                             |   |  |
|                                                                                                                                  |                                                               | Name: 2-butanol                                                                                                     | _ |  |
| ОН                                                                                                                               | 1. Na metal<br>2. CH <sub>3</sub> CH <sub>2</sub> Br          |                                                                                                                     |   |  |
| ОН                                                                                                                               | Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> / H <sup>+</sup> |                                                                                                                     |   |  |
|                                                                                                                                  |                                                               | Name: 3-<br>methylcyclohexanone                                                                                     |   |  |
| $CH_3 - C - OCH_2CH_2CH_3$ Name: propyl acetate                                                                                  | 3 M NaOH / heat                                               | CH <sub>3</sub> CO <sub>2</sub> -<br>+<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH                        |   |  |
| О<br>СН <sub>3</sub> С<br>СЧ <sub>3</sub> С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С | excess CH <sub>3</sub> CH <sub>2</sub> NH <sub>2</sub>        | $CH_{3}CO_{2}^{-} + O_{H_{3}C}O_{C}^{-}O_{-}NH_{U}O_{C}O_{C}O_{-}O_{C}O_{-}O_{C}O_{C}O_{C}O_{C}O_{C}O_{C}O_{C}O_{C$ |   |  |



D-idose







D-Idose is in equilibrium with two cyclic pyranose forms. Give the Haworth projection of these two cyclic forms.



Give the products obtained when D-idose is treated with the following reagents.



Draw the Haworth structure of a reducing disaccharide, which, on acid hydrolysis, yields D-idose as the only product.



