- High-purity benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH},\left(\Delta H^{\circ}{ }_{\text {comb }}=-3227 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ is used to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ is placed in the bomb calorimeter, along with 750 mL of pure $\mathrm{H}_{2} \mathrm{O}(1)$, and the remaining 250 mL cavity is filled with pure $\mathrm{O}_{2}(\mathrm{~g})$ at 10.00 atm . The $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ is ignited and completely burned, causing the temperature of the water and the bomb calorimeter to rise from $27.20^{\circ} \mathrm{C}$ to $33.16^{\circ} \mathrm{C}$. Write the chemical equation corresponding to the standard enthalpy of combustion ($\Delta H^{\circ}{ }_{\text {comb }}$) of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{~s})+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 7 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Given that $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ has a heat capacity of $4.184 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$ and a density of $0.997 \mathrm{~g} \mathrm{~mL}^{-1}$, calculate the heat capacity of the bomb calorimeter itself (in units of $\mathrm{J} \mathrm{K}^{-1}$). Ignore the heat capacity of the gases and of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$.

The molar mass of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ is $(7 \times 12.01(\mathrm{C}))+(6 \times 1.008(\mathrm{H}))+(2 \times 16.00(\mathrm{O}))=$ 122.118. Therefore 1.000 g corresponds to:

$$
\text { amount of } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}=\frac{\text { mass }}{\text { molar mass }}=\frac{1.000}{122.118}=0.008189 \mathrm{~mol}
$$

As combustion of $\mathbf{1} \mathbf{~ m o l}$ gives out 3227 kJ of heat, this amount gives out:

$$
\mathrm{q}=0.008189 \times 3227=26.42 \mathrm{~kJ}=26.43 \times 10^{3} \mathrm{~J}
$$

This heat leads to a temperature increase of $(33.16-27.20)=5.96{ }^{\circ} \mathrm{C}$ for the combination of the calorimeter and the water. As water has a density of 0.997 g $\mathrm{mL}^{-1}, \mathbf{7 5 0} \mathrm{~mL}$ has a mass of $750 \times 0.997 \mathrm{~g}$.

$$
\begin{aligned}
& \mathrm{q}=\left(\mathrm{mC}_{\text {water }}+\mathrm{C}_{\text {calorimeter }}\right) \times \Delta \mathrm{T} \\
& =\left((750 \times 0.997 \times 4.184)+\left(\mathrm{C}_{\text {calorimeter }}\right)\right) \times 5.96=26.42 \times 10^{3} \\
& \mathrm{C}_{\text {calorimeter }}=\mathbf{1 3 0 5} \mathrm{J} \mathrm{~K}^{-1}
\end{aligned}
$$

If 30.0% of the CO_{2} produced dissolves in the water, calculate the final total pressure (in atm) inside the 250 mL cavity of the bomb calorimeter. Assume oxygen is insoluble in water and ignore the vapour pressure of water.

Initially, 10.00 atm of oxygen is present in a volume of 250 mL and a temperature of $27.20^{\circ} \mathrm{C}$. Using the ideal gas equation, $\mathrm{PV}=\mathrm{nRT}$,

$$
\text { initial } n_{\mathrm{O}_{2}(\mathrm{~g})}=\frac{\mathrm{PV}}{R T}=\frac{(10.00) \times(0.250)}{(0.08206) \times(273+27.20)}=0.1015 \mathrm{~mol}
$$

From the chemical equation, $\frac{15}{2} \mathbf{m o l}$ of O_{2} are required for the combustion of every mole of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$. As $\mathbf{0 . 0 0 8 1 8 9} \mathbf{~ m o l}$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ is present,

$$
\text { consumed } n_{\mathrm{O}_{2}(\mathrm{~g})}=0.008189 \times \frac{15}{2}=0.06142 \mathrm{~mol}
$$

Therefore,

$$
\text { final } n_{\mathbf{O}_{2}(\mathrm{~g})}=0.1015-0.06142=0.0400 \mathrm{~mol}
$$

From the chemical equation, 7 moles of CO_{2} are produced for the combustion every mole of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$. As 0.008189 mol of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ is present,

$$
\text { total } \mathbf{n}_{\mathrm{CO}_{2}}=0.008189 \times 7=0.05732 \mathrm{~mol}
$$

As 30\% of this dissolves,

$$
\mathbf{n}_{\mathrm{CO}_{2}(\mathrm{~g})}=0.70 \times 0.05732=0.04013 \mathrm{~mol}
$$

The total number of moles of $\mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{CO}_{\mathbf{2}}(\mathrm{g})$ is therefore $0.0400+0.04013=$ 0.0801 . This is present in 250 mL at $33.16^{\circ} \mathrm{C}$. Using the ideal gas law,

$$
P=\frac{n R T}{V}=\frac{(0.0801) \times(0.08206) \times(273+33.16)}{0.250}=8.05 \mathrm{~atm}
$$

- The specific heat capacity of water is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$ and the specific heat capacity of copper is $0.39 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$. If the same amount of energy were applied to a 1.0 mol sample of each substance, both initially at $25^{\circ} \mathrm{C}$, which substance would get hotter? Show all working.

Using $q=C \times m \times \Delta T$, the temperature change for a substance of mass m and specific heat capacity \mathbf{C} when an amount of heat equal to q is supplied is given by:

$$
\Delta T=\frac{q}{C \times m}
$$

The atomic mass of copper is $\mathbf{6 3 . 5 5}$. Hence, the temperature change for $\mathbf{1 . 0} \mathbf{~ m o l}$ of copper is

$$
\Delta T(\text { copper })=\frac{\mathrm{q}}{(0.39 \times 63.55)}=\frac{\mathrm{q}}{24.8}{ }^{\circ} \mathrm{C}
$$

The molar mass of $\mathrm{H}_{2} \mathrm{O}$ is $(2 \times 1.008(\mathrm{H}))+\mathbf{1 6 . 0 0}(\mathrm{O})=\mathbf{1 8 . 0 1 6}$. Hence, the temperature change for 1.0 mol of water is

$$
\Delta T(\text { water })=\frac{\mathrm{q}}{(4.18 \times 18.016)}=\frac{\mathrm{q}}{75.3}{ }^{\circ} \mathrm{C}
$$

Hence,

$$
\Delta T \text { (copper) }>\Delta T \text { (water) }
$$

Answer: Copper

- Explain why the acidity of hydrogen halides increases with increasing halogen size (i.e., $K_{\mathrm{a}}(\mathrm{HCl})<K_{\mathrm{a}}(\mathrm{HBr})<K_{\mathrm{a}}(\mathrm{HI})$), while the acidity of hypohalous acids decreases with increasing halogen size $\left(\right.$ i.e., $K_{\mathrm{a}}(\mathrm{HOCl})>K_{\mathrm{a}}(\mathrm{HOBr})>K_{\mathrm{a}}(\mathrm{HOI})$).

For the hydrogen halides, the length of the H-X bond increases and hence gets weaker as the halogen gets bigger,. The weaker the bond, the more easily the \mathbf{H}^{+} dissociates.

For the hypohalous acids, as the electronegativity of the halide increases, the more electron density it pulls from the $\mathbf{O}-\mathbf{H}$ bond towards itself. This results in the $\mathrm{O}-\mathrm{H}$ bond becoming more polar and increasing the ease with which the H^{+} will be lost.

- The K_{a} of benzoic acid is $6.3 \times 10^{-5} \mathrm{M}$ at $25^{\circ} \mathrm{C}$.

Calculate the pH of a 0.0100 M aqueous solution of sodium benzoate $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}\right)$.

As benzoic acid is a weak acid, its conjugate base, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$, is a weak base and so $\left[\mathrm{OH}^{-}\right]$must be calculated using the reaction table:

	$\mathrm{C}_{6} \mathbf{H}_{5} \mathrm{COO}^{-}$	$\mathbf{H}_{2} \mathrm{O}$	\rightleftharpoons	$\mathbf{O H}^{-}$	$\mathbf{C}_{6} \mathbf{H}_{5} \mathbf{C O O H}$
initial	$\mathbf{0 . 0 1 0 0}$	large		$\mathbf{0}$	$\mathbf{0}$
change	$-\mathbf{x}$	negligible		$+\mathbf{x}$	$+\mathbf{x}$
final	$0.0100-\mathbf{x}$	large		\mathbf{x}	\mathbf{x}

The equilibrium constant K_{b} is given by:

$$
K_{b}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}=\frac{\mathrm{x}^{2}}{0.0100-\mathrm{x}}
$$

For an acid and its conjugate base in aqueous solution, $K_{\mathrm{a}} \times K_{\mathrm{b}}=K_{\mathrm{w}}=10^{-14}$. Hence,

$$
K_{\mathrm{b}}=\frac{10^{-14}}{6.3 \times 10^{-5}}=1.6 \times 10^{-10}
$$

As K_{b} is very small, $0.0100-\mathrm{x} \sim \mathbf{0 . 0 1 0 0}$ and hence:

$$
\mathrm{x}^{2}=0.0100 \times\left(1.6 \times 10^{-10}\right) \quad \text { or } \quad \mathrm{x}=1.3 \times 10^{-6} \mathrm{M}=\left[\mathrm{OH}^{-}(\mathrm{aq})\right]
$$

Hence, the pOH is given by:

$$
\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]=-\log _{10}\left[1.3 \times 10^{-6}\right]=5.9
$$

Finally, $\mathbf{p H}+\mathbf{p O H}=14.0$ so

$$
\mathrm{pH}=14.0-5.9=8.1
$$

	Answer: $\mathbf{p H}=\mathbf{8 . 1}$
	Answer: $\mathbf{p H}=\mathbf{4 . 1}$

A buffer solution is prepared by adding 375 mL of this 0.0100 M aqueous solution of sodium benzoate to 225 mL of 0.0200 M aqueous benzoic acid. Calculate the pH of the buffer solution.

375 mL of a 0.0100 of benzoate contains,
moles of benzoate $=$ volume \times concentration $=0.375 \times 0.0100=3.75 \times 10^{-3} \mathrm{~mol}$
225 mL of a 0.0200 of benzoic acid contains,
moles of benzoic acid $=0.225 \times 0.0200=4.50 \times 10^{-3} \mathbf{~ m o l}$
The mixture has a volume of $(375+225)=600 \mathrm{~mL}$ so the concentrations of benzoate (base) and benzoic acid (acid) are:

$$
\begin{aligned}
& {[\text { base }]=\frac{\text { number of moles }}{\text { volume }}=\frac{3.75 \times 10^{-3}}{0.600}=6.25 \times 10^{-3} \mathrm{M}} \\
& {[\text { acid }]=\frac{4.50 \times 10^{-3}}{0.600}=7.50 \times 10^{-3} \mathrm{M}}
\end{aligned}
$$

$$
\operatorname{Asp} K_{\mathrm{a}}=-\log _{10} K_{\mathrm{a}}
$$

$$
\mathrm{p} K_{\mathrm{a}}=-\log _{10}\left(6.3 \times 10^{-5}\right)=4.2
$$

The pH of the buffer can be calculated using the Henderson-Hasselbalch equation,

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10}\left(\frac{[\text { base }]}{[\text { acid }]}\right)=4.2+\log _{10}\left(\frac{6.25 \times 10^{-3}}{7.50 \times 10^{-3}}\right)=4.1
$$

Answer: $\mathbf{p H}=\mathbf{4 . 1}$

- "Water gas" is a mixture of combustible gases produced from steam and coal according to the following reaction:

$$
\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \quad \Delta H^{\circ}=131 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

The equation for the complete combustion of 1 mol of water gas (i.e. $0.5 \mathrm{~mol} \mathrm{CO}(\mathrm{g})$ and $\left.0.5 \mathrm{~mol} \mathrm{H}_{2}(\mathrm{~g})\right)$ can be written as:

$$
1 / 2 \mathrm{CO}(\mathrm{~g})+1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 1 / 2 \mathrm{CO}_{2}(\mathrm{~g})+1 / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Calculate the standard enthalpy of combustion of water gas, given the following thermochemical data.

$$
\begin{aligned}
& \Delta H^{\circ}{ }_{\text {vap }}\left(\mathrm{H}_{2} \mathrm{O}\right)=44 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)=-286 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)=-393 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Using $\Delta_{\mathrm{rxn}} \mathrm{H}^{\mathbf{0}}=\sum \mathrm{m} \Delta_{\mathrm{f}} \mathrm{H}^{\mathbf{0}}$ (products) $-\sum \mathrm{n} \Delta_{\mathrm{f}} \mathrm{H}^{\mathbf{0}}$ (reactants) for the vaporization of water $\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathbf{H}_{2} \mathbf{O}(\mathrm{~g})\right)$ gives

$$
\begin{aligned}
\Delta_{\text {vap }} H^{\mathbf{0}} & =\left[\Delta_{f} \mathbf{H}^{\mathbf{0}}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right)\right]-\left[\Delta_{\mathrm{f}} \mathbf{H}^{\mathbf{0}}\left(\mathrm{H}_{2} \mathrm{O}(\mathbf{l})\right)\right] \\
& =\left[\Delta_{\mathrm{f}} \mathbf{H}^{\mathbf{0}}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right)\right]-(-286)=+\mathbf{4 4}
\end{aligned}
$$

Hence $\Delta_{\mathrm{f}} \mathrm{H}^{\mathbf{0}}\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}(\mathrm{g})\right)=(+44)+(\mathbf{- 2 8 6})=\mathbf{- 2 4 2} \mathrm{kJ} \mathrm{mol}^{-1}$
Using $\Delta_{r x n} H^{0}=\Sigma m \Delta_{f} H^{\mathbf{0}}$ (products) $-\sum n \Delta_{f} H^{\mathbf{0}}$ (reactants) for the reaction,

$$
\begin{aligned}
& \mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \text { gives } \\
& \Delta_{\mathrm{rxn}} \mathrm{H}^{\mathbf{0}}= {\left[\Delta_{\mathrm{f}} \mathrm{H}^{\mathbf{0}}(\mathrm{CO}(\mathrm{~g})]-\left[\Delta_{\mathrm{f}} \mathbf{H}^{\mathbf{0}}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right)\right]\right.} \\
&= {\left[\Delta_{\mathrm{f}} \mathbf{H}^{\mathbf{0}}(\mathrm{CO}(\mathrm{~g})]-(-\mathbf{2 4 2})=+\mathbf{1 3 1}\right.}
\end{aligned}
$$

as $\Delta_{f} H^{\mathbf{0}}\left(\mathrm{H}_{2}(\mathrm{~g})\right)$ and $\Delta_{\mathrm{f}} \mathrm{H}^{\mathbf{0}}(\mathrm{C}(\mathrm{s}))$ are both zero for elements in their standard states. Hence $\Delta_{\mathrm{f}} \mathrm{H}^{\mathbf{0}} \mathbf{(C O}(\mathrm{g})=\mathbf{- 1 1 1 ~ k J ~ m o l}{ }^{-1}$

Using $\Delta_{\mathrm{rxn}} H^{\mathbf{0}}=\Sigma \mathrm{m} \Delta_{\mathrm{f}} \mathbf{H}^{\mathbf{0}}$ (products) $-\Sigma \mathrm{n} \Delta_{\mathrm{f}} H^{\mathbf{0}}$ (reactants) for the reaction,

$$
\begin{aligned}
& 1 / 2 \mathrm{CO}(\mathrm{~g})+1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 1 / 2 \mathrm{CO}_{2}(\mathrm{~g})+1 / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \text { gives } \\
& \Delta_{\text {comb }} \mathrm{H}^{\mathbf{0}}=\left[\frac{1}{2} \Delta_{\mathrm{f}} \mathrm{H}^{\mathbf{0}}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)+\frac{1}{2} \Delta_{\mathrm{f}} \mathrm{H}^{\mathbf{0}}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right)\right]-\left[\frac{1}{2} \Delta_{\mathrm{f}} \mathrm{H}^{\mathbf{0}}(\mathrm{CO}(\mathrm{~g}))\right]
\end{aligned}
$$

as the enthalpy of formation of $\mathbf{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ are both zero for elements in their standard states. Hence,

$$
\Delta_{\text {comb }} H^{0}=\left[\left(\frac{1}{2} \times-393\right)+\left(\frac{1}{2} \times-242\right)\right]-\left[\left(\frac{1}{2} \times-111\right)\right]=-262 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

The $\mathrm{CO}(\mathrm{g})$ in water gas can be reacted further with $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ in the so-called "water-

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

At $900 \mathrm{~K}, K_{\mathrm{c}}=1.56$ for this reaction. A sample of water gas flowing over coal at 900 K contains a 1:1 mole ratio of $\mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2}(\mathrm{~g})$, as well as $0.250 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. This sample is placed in a sealed container at 900 K and allowed to come to equilibrium, at which point it contains $0.070 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CO}_{2}(\mathrm{~g})$. What was the initial concentration of $\mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ in the sample?

The reaction table is

	$\mathbf{C O}(\mathrm{g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	\rightleftharpoons	$\mathrm{CO}_{2}(\mathrm{~g})$	$\mathbf{H}_{2}(\mathrm{~g})$
initial	\mathbf{x}	$\mathbf{0 . 2 5 0}$		0	\mathbf{x}
change	$-\mathbf{0 . 0 7 0}$	$-\mathbf{0 . 0 7 0}$		+0.070	+0.070
equilibrium	$\mathbf{x}-\mathbf{0 . 0 7 0}$	$\mathbf{0 . 2 5 0}-\mathbf{0 . 0 7 0}$		0.070	$\mathbf{x}+0.070$

The equilibrium constant in terms of concentrations, K_{c}, is:

$$
\begin{aligned}
& K_{c}=\frac{\left[\mathrm{CO}_{2}(\mathrm{~g})\right]\left[\mathrm{H}_{2}(\mathrm{~g})\right]}{\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right][\mathrm{CO}(\mathrm{~g})]}=\frac{(0.070)(\mathrm{x}+0.070)}{(0.180)(\mathrm{x}-0.070)}=1.56 \\
& x=[\mathrm{CO}(\mathrm{~g})]_{\text {initial }}=\left[\mathrm{H}_{2}(\mathrm{~g})\right]_{\text {initial }}=0.12 \mathrm{~mol} \mathrm{~L}^{-1}
\end{aligned}
$$

$$
[\mathrm{CO}]=\left[\mathrm{H}_{2}\right]=\mathbf{0 . 1 2} \mathbf{~ m o l ~ L}^{-1}
$$

If the walls of the container are chilled to below $100^{\circ} \mathrm{C}$, what will be the effect on the concentration of $\mathrm{CO}_{2}(\mathrm{~g})$?

At temperatures below $100{ }^{\circ} \mathrm{C}$, the water vapour will condense to form $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$. Following Le Chatelier's principle, the equilibrium will shift to the left as $\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]$ is reduced by this process and so $\left[\mathrm{CO}_{2}(\mathrm{~g})\right]$ will decrease.

- The isomerisation of glucose-6-phosphate (G6P) to fructose-6-phosphate (F6P) is a

$$
\mathrm{G} 6 \mathrm{P} \rightleftharpoons \mathrm{~F} 6 \mathrm{P} \quad \Delta G^{\circ}=1.67 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Calculate the equilibrium constant for this process at 298 K .

Using $\Delta G^{\circ}=-R T \ln K$,

$$
1.67 \times 10^{3}=-(8.314) \times(298) \times \ln K
$$

$$
K=0.510
$$

$$
\text { Answer: } \mathbf{K}=\mathbf{0 . 5 1 0}
$$

What is the free energy change (in $\mathrm{kJ} \mathrm{mol}^{-1}$) involved in a mixture of 3.00 mol of F6P and 2.00 mol of G6P reaching equilibrium at 298 K ?

The reaction quotient, for the reaction, is $Q=\frac{[F 6 P]}{[G 6 P]}=\frac{\mathbf{3 . 0 0}}{2.00}=1.50$.
Using $\Delta \mathbf{G}=\Delta \mathbf{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q}$,

$$
\Delta G=\left(1.67 \times 10^{3}\right)+(8.314 \times 298) \times \ln (1.50)=+2670 \mathrm{~J} \mathrm{~mol}^{-1}=+2.67 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Answer: $\mathbf{+ 2 . 6 7} \mathbf{~ k J ~ m o l}^{-1}$
Sketch a graph of $G_{\text {sys }}$ versus "extent of reaction", with a curve showing how $G_{\text {sys }}$ varies as G6P is converted to F6P. Indicate the position on this curve corresponding to 3.00 mol of F6P and 2.00 mol of G6P.

- Assume that NaCl is the only significant solute in seawater. A 1.000 L sample of seawater at $25^{\circ} \mathrm{C}$ and 1 atm has a mass of 1.0275 kg and contains 33.0 g of NaCl . At what temperature would this seawater freeze? The freezing point depression constant of water is $1.86^{\circ} \mathrm{C} \mathrm{kg} \mathrm{mol}^{-1}$.

The formula mass of $\mathbf{N a C l}$ is $22.99(\mathbf{N a})+35.45(\mathrm{Cl})=58.44$. Therefore, 33.0 g corresponds to:

$$
\text { number of moles of } \mathrm{NaCl}=\frac{\text { mass }}{\text { formula mass }}=\frac{33.0}{58.44}=0.565 \mathrm{~mol}
$$

As each mole of $\mathbf{N a C l}$ dissolves to give 2 moles of particles ($\mathbf{N a}^{+}(\mathrm{aq})$ and $\mathrm{Cl}^{-}(\mathrm{aq})$), the number of moles of solute is $\mathbf{2 \times 0 . 5 6 5}=\mathbf{1 . 1 2 9} \mathbf{~ m o l}$.

If salt water contains only water and NaCl ,

$$
\text { mass of water }=1.0275-0.0330=0.995 \mathrm{~kg}
$$

Hence, the molality is

$$
\mathrm{m}=\frac{\text { moles of solute }}{\text { mass of solvent }}=\frac{1.129}{0.995}=1.136 \mathrm{~mol} \mathrm{~kg}^{-1}
$$

The freezing point depression is then:

$$
\Delta T_{f}=K_{f} m=1.86 \times 1.136=2.11^{\circ} \mathrm{C}
$$

As water normally freezes at $0^{\circ} \mathrm{C}$, this saltwater will freeze at $\mathbf{- 2 . 1 1}{ }^{\circ} \mathrm{C}$.

The vapour pressure above pure $\mathrm{H}_{2} \mathrm{O}$ is 23.76 mmHg at $25^{\circ} \mathrm{C}$ and 1 atm . Calculate the vapour pressure above this seawater under the same conditions.

The molar mass of $\mathrm{H}_{2} \mathrm{O}$ is $(\mathbf{2} \times \mathbf{1 . 0 0 8}(\mathrm{H}))+\mathbf{1 6 . 0 0}(\mathrm{O})=18.016$. Therefore, $\mathbf{0 . 9 9 5}$ kg of water corresponds to

$$
\text { moles of water }=\frac{\text { mass }}{\text { molar mass }}=\frac{\left(0.995 \times 10^{3}\right)}{18.016}=55.3 \mathrm{~mol}
$$

As 1.129 mol of solute is also present, the mole fraction, X, of water is

$$
X_{\text {water }}=\frac{\text { number of moles of water }}{\text { total number of moles }}=\frac{55.3}{(55.3+1.129)}=0.980
$$

From Raoult's law,

$$
P_{\text {water }}=X_{\text {water }} P_{\text {water }}{ }^{0}=0.980 \times 23.76=23.3 \mathrm{mmHg}
$$

Answer: $\mathbf{2 3 . 3} \mathbf{~ m m H g}$

The desalination of seawater by reverse osmosis has been suggested as a way of alleviating water shortages in Sydney. What pressure (in Pa) would need to be applied to this seawater in order to force it through a semi-permeable membrane, yielding pure $\mathrm{H}_{2} \mathrm{O}$?

The concentration of solute is:

$$
\text { concentration }=c=\frac{\text { number of moles of solute }}{\text { volume }}=\frac{1.129}{1.000}=1.129 \mathrm{M}
$$

The osmotic pressure, Π, required is given by

$$
\Pi=c R T=(1.129) \times(0.08206) \times(25+273)=27.6 \mathrm{~atm}
$$

As $1 \mathbf{~ a t m}=101.3 \times 10^{3} \mathrm{~Pa}$,

$$
\Pi=27.6 \times\left(101.3 \times 10^{3}\right)=2800000 \mathrm{~Pa}=2.80 \times 10^{6} \mathrm{~Pa}
$$

Answer: $\mathbf{2 . 8 0} \times \mathbf{1 0}^{\mathbf{6}} \mathbf{~ P a}$

- The molar solubility of lead(II) fluoride, PbF_{2}, is found to be $2.6 \times 10^{-3} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. Calculate the value of K_{sp} for this compound at this temperature.

The solubility equilibrium and constant for $\mathrm{PbF}_{2}(\mathrm{~s})$ are,

$$
\mathrm{PbF}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq}) \quad K_{\mathrm{sp}}=\left[\mathbf{P b}^{2+}(\mathrm{aq})\right]\left[\mathrm{F}^{-}(\mathrm{aq})\right]^{2}
$$

As one moles of $\mathbf{P b}^{2+}(\mathrm{aq})$ and two moles of $\mathrm{F}^{-}(\mathrm{aq})$ are produced for every mole of $\mathrm{PbF}_{2}(\mathrm{~s})$ which dissolves, $\left[\mathrm{Pb}^{2+}(\mathrm{aq})\right]=2.6 \times 10^{-3} \mathrm{M}$ and $\left[\mathrm{F}^{-}(\mathrm{aq})\right]=\left(2 \times 2.6 \times 10^{-3}\right)=$ $5.2 \times \mathbf{1 0}^{-3} \mathrm{M}$. Hence,

$$
K_{\text {sp }}=\left(2.6 \times 10^{-3}\right) \times\left(5.2 \times 10^{-3}\right)^{2}=7.0 \times 10^{-8}
$$

$$
K_{\mathrm{sp}}=7.0 \times \mathbf{1 0}^{-8}
$$

- Draw all stereoisomers of the complex ion of $\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Br}_{3}$.
(en = ethylenediamine $=\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$)

- Name the following complexes.

$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl}$	tetraaaquadibromocobalt(III) chloride
$\mathrm{K}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$	potassium dicyanoaurate(I)

- Write the chemical equation for the formation of the complex ion $\left[\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$.

$$
\mathrm{Cd}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}
$$

Write the associated stability constant expression ($K_{\text {stab }}$).

$$
K_{\text {stab }}=\frac{\left[\left[\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}\right]}{\left[\mathrm{Cd}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{4}}
$$

- The physiological properties of chromium depend on its oxidation state. Consider the half reaction in which $\mathrm{Cr}(\mathrm{VI})$ is reduced to $\mathrm{Cr}(\mathrm{III})$.

$$
\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+5 \mathrm{OH}^{-}(\mathrm{aq}) \quad E^{0}=-0.13 \mathrm{~V}
$$

Calculate the potential for this half reaction at $25^{\circ} \mathrm{C}$, where $\mathrm{pH}=7.40$ and $\left[\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})\right]=1.0 \times 10^{-6} \mathrm{M}$.

As $\mathbf{p H}+\mathbf{p O H}=14.00$ and $\mathbf{p O H}=-\log _{10}\left(\left[\mathrm{OH}^{-}(\mathrm{aq})\right]\right)$, at $\mathrm{pH}=7.40$,

$$
\begin{aligned}
& \mathrm{pOH}=14.00-7.40=6.60=-\log _{10}\left(\left[\mathrm{OH}^{-}(\mathrm{aq})\right]\right) \\
& {\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=10^{-6.60}}
\end{aligned}
$$

The reaction quotient for the half-cell reaction is,

$$
\mathrm{Q}=\frac{\left[\mathrm{OH}^{-}(\mathrm{aq})\right]^{5}}{\left[\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})\right]}=\frac{\left(10^{-6.60}\right)^{5}}{\left(1.0 \times 10^{-6}\right)}=1.0 \times 10^{-27}
$$

Using the Nernst equation for this three electron process,

$$
E=E^{o}-\frac{\mathrm{RT}}{\mathrm{nF}} \ln \mathrm{Q}=(-0.13)-\frac{8.314 \times(25+273)}{3 \times 96485} \ln \left(1.0 \times 10^{-27}\right)=+0.40 \mathrm{~V}
$$

```
Answer: E=+0.40 V
```

- Consider the following reaction at 298 K .

$$
\mathrm{Ni}^{2+}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s}) \quad \rightleftharpoons \mathrm{Ni}(\mathrm{~s})+\mathrm{Zn}^{2+}(\mathrm{aq})
$$

Calculate ΔG^{0} for the cell. (Relevant electrode potentials can be found on the data page.)

The half-cell reduction reactions and potentials are:

$$
\begin{array}{lr}
\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathbf{s}) & \mathbf{E}^{0}=-\mathbf{0 . 2 4 ~ V} \\
\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathbf{Z n}(\mathrm{s}) & \mathbf{E}^{0}=-\mathbf{0 . 7 6 ~ V}
\end{array}
$$

In the reaction above, the Zn is undergoing oxidation so its potential is reversed and the overall cell potential is:

$$
\mathbf{E}_{\text {cell }}^{0}=(-0.24)-(-0.76)=+0.52 \mathrm{~V}
$$

Using $\Delta \mathrm{G}^{\mathbf{0}}=-\mathbf{n F E}{ }^{\mathbf{0}}$ for this two electron reaction:

$$
\Delta G^{0}=-(2) \times(96485) \times(+0.52)=-100000 \mathrm{~J} \mathrm{~mol}^{1}=-100 \mathrm{~kJ} \mathrm{~mol}^{1}
$$

Answer: - $\mathbf{- 1 0 0} \mathbf{~ k J ~ m o l}^{\mathbf{- 1}}$

What is the value of the equilibrium constant for the reaction at 298 K ?

Using $\mathrm{E}^{\mathbf{0}}=\frac{\mathrm{RT}}{\mathrm{nF}} \ln \mathrm{K}$,

$$
+0.52=\frac{(8.314) \times(298)}{(2) \times(96485)} \ln K \quad \text { so } K=3.89 \times 10^{17}
$$

Alternatively, using $\Delta \mathbf{G}^{\mathbf{0}}=-\mathrm{RT} \ln K$,

$$
-100 \times 10^{3}=-(8.314) \times(298) \times \ln K \quad \text { so } K=3.89 \times 10^{17}
$$

Answer: $\mathbf{3 . 8 9 \times 1 0}{ }^{\mathbf{1 7}}$
Express the overall reaction in voltaic cell notation.

In the reaction, Zn is being oxidized and hence is the anode. $\mathrm{Ni}^{\mathbf{2 +}}$ is being reduced and so Ni is the cathode. In the standard cell notation, the anode is written on the left and the cathode on the right:

$$
\mathbf{Z n}(\mathbf{s})\left|\mathbf{Z n}^{2+}(\mathrm{aq}) \| \mathbf{N i}^{\mathbf{2}^{+}}(\mathrm{aq})\right| \mathbf{N i}(\mathbf{s})
$$

ANSWER CONTINUES ON THE NEXT PAGE

- Using a current of 2.00 A , how long (in minutes) will it take to plate out all of the silver from 0.250 L of a $1.14 \times 10^{-2} \mathrm{M} \mathrm{Ag}^{+}(\mathrm{aq})$ solution?

The number of moles of $\mathrm{Ag}^{+}(\mathrm{aq})$ in a 0.250 L of a $1.14 \times 10^{-\mathbf{2}} \mathrm{M}$ solution is, number of moles $=$ volume \times concentration $=0.250 \times 1.14 \times 10^{-2}=2.85 \times 10^{-3} \mathrm{~mol}$ The reduction of $\mathrm{Ag}^{+}(\mathrm{aq})$ is a one electron process, $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathbf{A g}(\mathrm{s})$, so this number of moles of electrons are required.

As the number of moles of electrons delivered by a current I in a time t is,
number of moles of electrons $=\frac{I t}{F}=\frac{2.00 \times t}{96485}=2.85 \times 10^{-3}$
$t=\mathbf{1 3 7} \mathbf{s}=\mathbf{2 . 2 9}$ minutes

- If a medical procedure calls for 2.0 mg of ${ }^{48} \mathrm{~V}$, what mass of isotope would be required to be able to use it exactly one week later? The half life of ${ }^{48} \mathrm{~V}$ is 1.61 days.

The decay constant is related to the half life as $t_{1 / 2}=\frac{\ln 2}{\lambda}$. Thus,

$$
\lambda=\frac{\ln 2}{1.61}=0.431 \text { days }^{-1}
$$

The number of radioactive nuclei decreases with time according to the equation,

$$
\ln \left(\frac{\mathbf{N}_{\mathbf{0}}}{\mathbf{N}_{\mathrm{t}}}\right)=\lambda \mathbf{t}
$$

If $\mathbf{N}_{\mathbf{t}}=\mathbf{2 . 0} \mathbf{~ m g}$ after $\mathbf{t}=\mathbf{7}$ days,

$$
\ln \left(\frac{\mathbf{N}_{0}}{2.0 \times 10^{-3}}\right)=(0.431) \times 7.00 \quad \text { so } N_{0}=0.041 \mathrm{~g}=41 \mathrm{mg}
$$

Answer: $\mathbf{4 . 1} \mathbf{~ m g}$

- Describe how hydrophilic and hydrophobic colloids are stabilised in water.

They can be stabilised via electrostatic and steric stabilisation.
Hydrophilic colloids may have a charge on their surface that attracts oppositely charged ions (H^{+}or $\mathbf{O H}^{-}$present in water) to form a tightly bound layer known as the Stern Layer. The Stern layer is surrounded by a diffuse layer which contains an excess of counter-ions (opposite in charge to the Stern layer) and a deficit of co-ions. The Stern layer and diffuse layer are collectively known as a double layer. Coagulation of a hydrophilic colloid is prevented by mutual repulsion of the double layers.

Hydrophobic colloids may be stabilised by the use of a surfactant, e.g. a long chain fatty acid with a polar head and a non-polar tail. When dispersed in water these molecules arrange themselves spherically so that the polar (hydrophilic) heads are interacting with the polar water molecules and the non-polar (hydrophobic) tails are interacting with each other. This arrangement is called a micelle. The hydrophobic colloid can be stabilized by dissolving in the non-polar interior of the micelle.

- Calculate the standard free-energy change for the following reaction at 298 K .

$$
2 \mathrm{Au}(\mathrm{~s})+3 \mathrm{Mg}^{2+}(1.0 \mathrm{M}) \rightarrow 2 \mathrm{Au}^{3+}(1.0 \mathrm{M})+3 \mathrm{Mg}(\mathrm{~s})
$$

The half-cell reduction reactions and potentials are:

$$
\begin{array}{ll}
\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{~s}) & \mathrm{E}^{0}=+1.50 \mathrm{~V} \\
\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{~s}) & \mathbf{E}^{0}=-2.36 \mathrm{~V}
\end{array}
$$

In the reaction above, the Au is undergoing oxidation so its potential is reversed and the overall cell potential is:

$$
\mathbf{E}_{\text {cell }}^{0}=(-2.36)-(+1.50)=-3.86 \mathrm{~V}
$$

Using $\Delta \mathbf{G}^{\mathbf{0}}=\mathbf{- n F E}{ }^{\mathbf{0}}$ for this six electron reaction:

$$
\Delta G^{0}=-(6) \times(96485) \times(-3.86)=+2.23 \times 10^{6} \mathrm{~J} \mathrm{~mol}^{1}=+2.23 \times 10^{3} \mathrm{~kJ} \mathrm{~mol}^{1}
$$

- The major pollutants $\mathrm{NO}(\mathrm{g}), \mathrm{CO}(\mathrm{g}), \mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$, which are emitted by cars, can react according to the following equation.

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

The following rate data were collected at $225^{\circ} \mathrm{C}$.

Experiment	$\left[\mathrm{NO}_{2}\right]_{0}(\mathrm{M})$	$[\mathrm{CO}]_{0}(\mathrm{M})$	Initial rate $\left(\mathrm{d}\left[\mathrm{NO}_{2}\right] / \mathrm{dt}, \mathrm{M} \mathrm{s}^{-1}\right)$
1	0.263	0.826	1.44×10^{-5}
2	0.263	0.413	1.44×10^{-5}
3	0.526	0.413	5.76×10^{-5}

Determine the rate law for the reaction.

Between experiments (1) and (2), $\left[\mathrm{NO}_{2}\right]_{0}$ is constant and $[\mathrm{CO}]_{0}$ is halved. The rate does not change. The rate is independent of [CO]: zero order with respect to [CO].

Between experiments (2) and (3), $[\mathrm{CO}]_{0}$ is kept constant and $\left[\mathrm{NO}_{2}\right]_{0}$ is doubled. The rate increases by a factor of four: the rate is second order with respect to [NO_{2}]. Overall,

$$
\text { rate } \alpha\left[\mathrm{NO}_{2}\right]^{2}=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}
$$

Calculate the value of the rate constant at $225^{\circ} \mathrm{C}$.

	Answer: $\mathbf{2 . 0 8} \times \mathbf{1 0}^{-4} \mathbf{M}^{-1} \mathbf{s}^{-1}$

Calculate the rate of appearance of CO_{2} when $\left[\mathrm{NO}_{2}\right]=[\mathrm{CO}]=0.500 \mathrm{M}$.
When $\left[\mathrm{NO}_{2}\right]=\mathbf{0 . 5 0 0} \mathrm{M}$, rate $=\frac{\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=\left(\mathbf{2 . 0 8} \times 10^{-4}\right) \times(\mathbf{0 . 5 0 0})^{2}=5.20 \times 10^{-5} \mathrm{M} \mathrm{s}^{-1}$
From the chemical equation, one mole of CO_{2} is produced for every mole of NO_{2} that is removed. Thus, rate of appearance of $\mathrm{CO}_{2}=$ rate of loss of NO_{2}.

Answer: $\mathbf{5 . 2 0} \times \mathbf{1 0}^{-5} \mathbf{M ~ s}^{-1}$
Suggest a possible mechanism for the reaction based on the form of the rate law.
Explain your answer.

A possible mechanism is:

$$
\begin{aligned}
& \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{NO}_{3}(\mathrm{~g}) \\
& \mathrm{NO}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) . \ldots(\text { fast })
\end{aligned}
$$

The first step is slow and is rate determining. For this step, rate $\alpha\left[\mathrm{NO}_{2}\right]^{2}$, as observed. The second step is fast and does not affect the overall rate of the reaction and so the rate is independent of $[\mathrm{CO}(\mathrm{g})]$.

