CHEM1109 Worksheet 12 – Answers to Critical Thinking Questions

The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 1: Elementary Steps

1. (a) It will double.

 (b) It will double.

 (c) rate $\propto [Br_2(g)]$ or rate $= k[Br_2(g)]$

2. (a) The number of collisions will double.

 (b) The number of collisions will double.

 (c) rate $\propto [Br_2(g)][H(g)]$ or rate $= k[Br_2(g)][H(g)]$

3. (a) The number of collisions will increase by a factor of 4: it will quadruple.

 (b) rate $\propto [NO(g)]^2$ or rate $= k[NO(g)]^2$

Model 2: A Multi-Step Mechanism

1. (a) The first step is the rate determining step.

 (b) rate $\propto [NO_2][O_3]$ or rate $= k_1[NO_2][O_3]$

2. (a) The second step is the rate determining step.

 (b) rate $\propto [O][O_3]$ or rate $= k_2[O][O_3]$

 (c) equilibrium constant $K = \frac{[O_2][O]}{[O_3]}$

 (d) $[O] = \frac{K[O_3]}{[O_2]}$

 (e) rate $= k_2[O][O_3] = k_2 \times \frac{K[O_3]}{[O_2]} \times [O_3] = \frac{k_2 K[O_3]^2}{[O_2]} = \frac{k'[O_3]^2}{[O_2]}$ where $k' = k_2K$

 (f) The rates of the forward and backward reactions are the same.

 (g) rate of forward reaction $= k_1[O_3]$

 rate of backward reaction $= k_{-1}[O_2][O]$

 As these rates are equal at equilibrium:

 $k_1[O_3] = k_{-1}[O_2][O]$ or $\frac{k_1}{k_{-1}} = \frac{[O_2][O]}{[O_3]} = K$ so $K = k_1 / k_{-1}$ or $k' = k_2 k_{-1} / k_1$

3. For the rate determining step, rate $= k_2[N_2O_2][O_2]$

 This involves $[N_2O_2]$ which is an intermediate and cannot be controlled experimentally. However, if the first step is at equilibrium:

 $K_{eq} = \frac{[N_2O_2]}{[NO]^2}$ or $[N_2O_2] = K_{eq}[NO]^2$

 Substituting this into the rate equation gives:

 rate $= k_2[N_2O_2][O_2] = k_2 \times K_{eq}[NO]^2 \times [O_2] = k_2 K_{eq}[NO]^2[O_2] = k[NO]^2[O_2]$ where $k = k_2 K_{eq}$

 The proposed mechanism is consistent with the experimental rate law, and warrants further investigation.