CHEM1109 Worksheet 1 – Answers to Critical Thinking Questions

The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 1: Calorimetry

1. When ΔT is negative: when the temperature lowers.
2. $C = c / M$ or $c = C \times M$ where M is the molar mass.
3. 10. K (2 significant figures).
4. No. The temperature difference is the same in both units.
5. 420 J
6. Heating up water by the same amount as olive oil requires more energy.
7. It would take 0.31 J to heat up if pure. The necklace is not pure.

Model 2: Energy

1. (a) $\Delta H < 0$ (i.e. negative) (b) $\Delta H > 0$ (i.e. positive)

2. (a) exothermic (b) endothermic

 “Thermic” = caused by heat.

3. Colder.
4. Negative.
5. Stronger in the products than in the reactants.
• A mass of 1.250 g of benzoic acid (C\textsubscript{7}H\textsubscript{6}O\textsubscript{2}) underwent combustion in a bomb calorimeter. If the heat capacity of the calorimeter was 10.134 kJ K–1 and the heat of combustion of benzoic acid is –3226 kJ mol–1, what is the change in internal energy during this reaction?

The molar mass of benzoic acid is:

\[
(7 \times 12.01 \text{ (C)} + 6 \times 1.008 \text{ (H)} + 2 \times 16.00 \text{ (O)}) \text{ g mol}^{-1} = 122.1 \text{ g mol}^{-1}
\]

A mass of 1.250 g therefore corresponds to:

\[
\text{number of moles} = \frac{\text{mass}}{\text{molar mass}} = \frac{1.250 \text{ g}}{122.1 \text{ g mol}^{-1}} = 0.0102 \text{ mol}
\]

As 3226 kJ are released per mole, the change in internal change for this amount is:

\[
\Delta U = (-3226 \text{ kJ mol}^{-1}) \times (0.0102 \text{ mol}) = –33.02 \text{ kJ}
\]

Answer: –33.02 kJ

Calculate the temperature change that should have occurred in the apparatus.

In a constant volume apparatus like a calorimeter, the change in internal energy is equal to the heat change, \(q\textsubscript{V}\). Using \(q = C\textsubscript{p}\Delta T\), the temperature change is:

\[
\Delta T = \frac{(33.02 \text{ kJ})}{(10.134 \text{ kJ K}^{-1})} = 3.528 \text{ K}
\]

As the combustion reaction evolves heat, the temperature increases.

Answer: +3.528 K

• The specific heat capacity of water is 4.18 J g–1 K–1 and the specific heat capacity of copper is 0.39 J g–1 K–1. If the same amount of energy were applied to a 1.0 mol sample of each substance, both initially at 25 °C, which substance would get hotter? Show all working.

Using \(q = C \times m \times \Delta T\), the temperature change for a substance of mass \(m\) and specific heat capacity \(C\) when an amount of heat equal to \(q\) is supplied is given by:

\[
\Delta T = \frac{q}{C \times m}
\]

The atomic mass of copper is 63.55. Hence, the temperature change for 1.0 mol of copper is

\[
\Delta T \text{ (copper)} = \frac{q}{(0.39 \times 63.55)} = \frac{q}{24.8} \text{ °C}
\]

The molar mass of H\textsubscript{2}O is (2 \times 1.008 \text{ (H)}) + 16.00 \text{ (O)} = 18.016. Hence, the temperature change for 1.0 mol of water is

\[
\Delta T \text{ (water)} = \frac{q}{(4.18 \times 18.016)} = \frac{q}{75.3} \text{ °C}
\]

Hence,

\[
\Delta T \text{ (copper)} > \Delta T \text{ (water)}
\]

Answer: copper
A 150.0 g block of iron metal is cooled by placing it in an insulated container with a 50.0 g block of ice at 0.0 °C. The ice melts, and when the system comes to equilibrium the temperature of the water is 78.0 °C. What was the original temperature (in °C) of the iron?

Data: The specific heat capacity of liquid water is 4.184 J K$^{-1}$ g$^{-1}$.
The specific heat capacity of solid iron is 0.450 J K$^{-1}$ g$^{-1}$.
The molar enthalpy of fusion of ice (water) is 6.007 kJ mol$^{-1}$.

The heat from the iron is used to melt the ice and to warm the water from 0.0 °C to 78.0 °C.

The molar mass of H$_2$O is (2 × 1.008 (H) + 16.00 (O)) g mol$^{-1}$ = 18.02 g mol$^{-1}$.
Hence 50.0 g of ice corresponds to:

number of moles = mass / molar mass = (50.0 g) / (18.02 g mol$^{-1}$) = 2.775 mol.

Hence the heat used to melt ice is:

\[q_1 = 6.007 \text{ kJ mol}^{-1} \times 2.775 \text{ mol} = 16.67 \text{ kJ} = 16670 \text{ J} \]

The heat used to warm 50.0 g water by 78.0 °C is:

\[q_2 = m \times C \times \Delta T = (50.0 \text{ g}) \times (4.184 \text{ J K}^{-1} \text{ g}^{-1}) \times (78.0 \text{ K}) = 16320 \text{ J} \]

Overall, the heat transferred from the iron is:

\[q = q_1 + q_2 = 16670 \text{ J} + 16320 \text{ J} = 32990 \text{ J} \]

This heat is lost from 150.0 g of iron leading to it cooling by \(\Delta T \):

\[q = m \times C \times \Delta T = (150.0 \text{ g}) \times (0.450 \text{ J K}^{-1} \text{ g}^{-1}) \times \Delta T = 32990 \text{ J} \]

\[\Delta T = 489 \text{ K} = 489 \text{ °C} \]

As the final temperature of the iron is 78.0 °C, its original temperature was (78.0 + 489) °C = 567 °C.

Answer: 567 °C