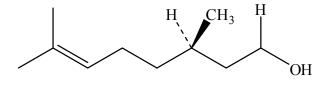
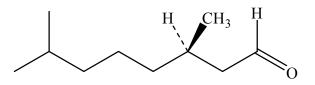
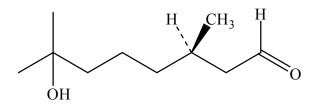
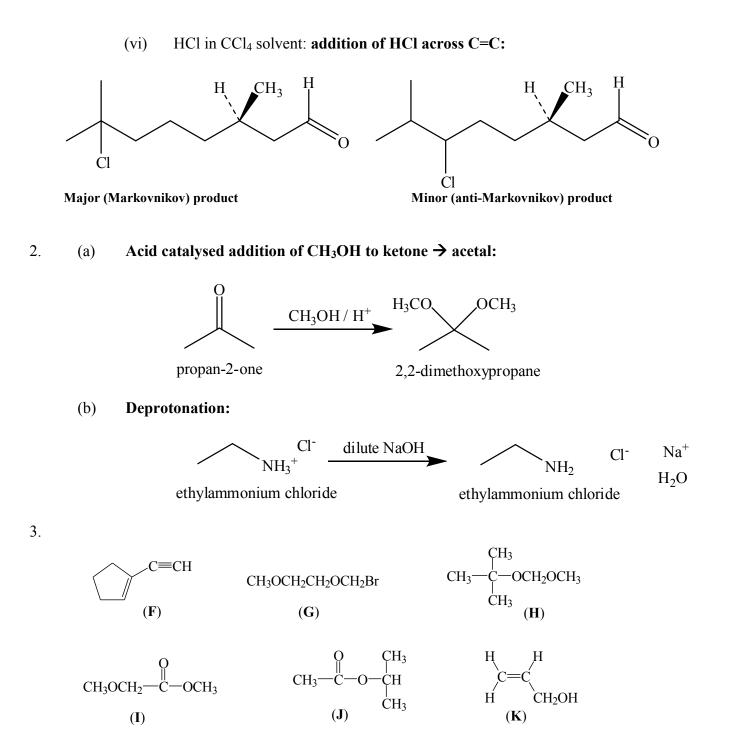

1.


- (a) $C_{10}H_{18}O$
- (b) Aldehyde (-CHO, carbonyl) and alkene (C=C)
- (c) (i) $\operatorname{Cr}_2 \operatorname{O}_7^{2-}/\operatorname{H}^+$: aldehyde \rightarrow carboxylic acid:


(ii) excess CH_3OH / catalytic amount H_2SO_4 : aldehyde \rightarrow acetal:


(iii) NaBH₄ in CH₃OH followed by H^+/H_2O : aldehyde \rightarrow primary alcohol:



(iv) H_2/Pd in ethanol: alkene \rightarrow alkane:

(v) 3 M H₂SO₄: alkene \rightarrow alcohol:

- (a) IR absorption in the range 1650-1800 cm⁻¹ is associated with the presence of the C=O group: I and J
- (b) Strong IR absorption in the range 3200-3700 cm⁻¹ is associated with the presence of the O-H and N-H groups: K only
- (c) Strong UV absorption is associated with the presence of conjugated systems (i.e. those with alternating single and multiple bonds): F only
- (d) The presence of only three signals in the ¹H NMR means that three (and only three) distinct types of hydrogen H, I and J.

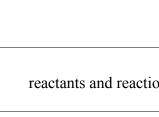
As these are singlets, there are *not* chemically different hydrogen atoms on immediately adjacent carbon atoms. This is not the case for J where the signal on hydrogen of the CH group will be split into a septet by the 2CH₃ groups (and the signal due to hydrogen atoms on these CH₃ will be split into a doublet by the CH group).

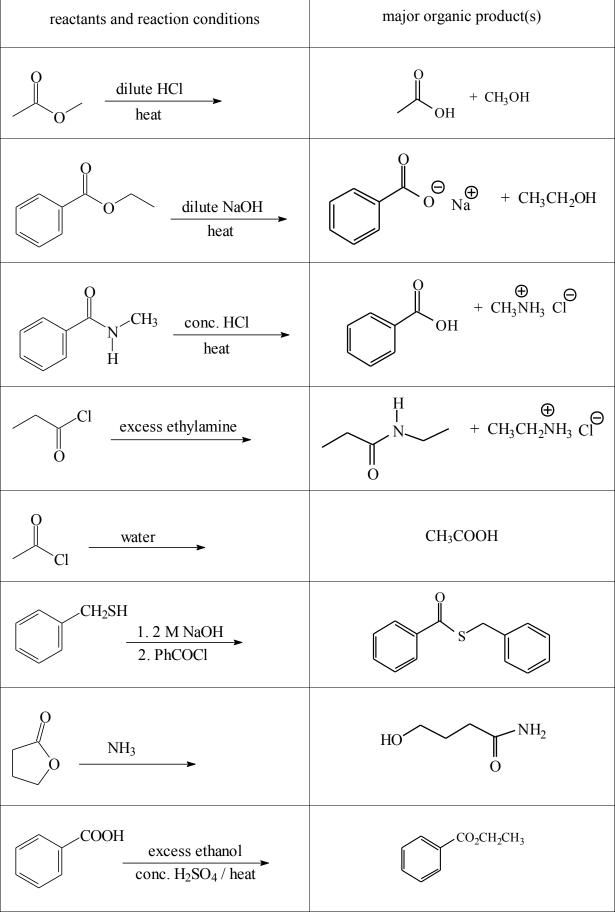
Overall, only H and I fit.

4.

(e) Bromine has two main isotopes ⁷⁹Br (51%) and ⁸¹Br (49%). The mass spectrum of G therefore shows peaks with approximately equal intensity at separated by 2 mass units.

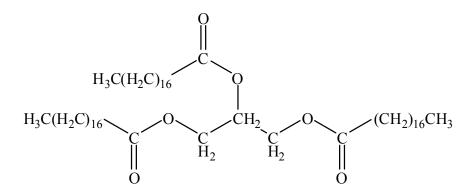
- (a) All of them have molar mass = 86.
- (b) The number shows two signals in the ¹H NMR spectrum a quartet ('a') and a singlet ('b'). The molecule therefore has only two types of hydrogen atom. This is only true for K.
- (c) The signal due to the hydrogen atoms on the CH₂ group is split into a quartet by the CH₃ group. Hence signal 'a' is due to the two hydrogen atoms on the CH₂ group. The relative intensity is therefore 2.


The signal due to the hydrogen atoms on the CH_3 group is split into a triplet by the CH_2 group. Hence signal 'b' is due to the three hydrogen atoms on the CH_3 group. The relative intensity is therefore 3.


(d) IR absorption in the ranges 1650-1750, 2850-2950 and 3200-3600 cm⁻¹ are associated with vibrations of C=O, C-H and O-H groups respectively.

1650-1750 cm⁻¹: H, I, K and M

2850-2950 cm⁻¹: all of them


3200-3600 cm⁻¹: J and L.

6. **Fats and oils are triesters of glycerol:**

glycerol + 3 fatty acid → triglyceride

The triglyceride can be converted back to stearic acid and glycerol using either strong aqueous acid and heat or strong aqueous base and heat.